Documentation

Mathlib.NumberTheory.RamificationInertia.Galois

Ramification theory in Galois extensions of Dedekind domains #

In this file, we discuss the ramification theory in Galois extensions of Dedekind domains, which is also called Hilbert's Ramification Theory.

Assume B / A is a finite extension of Dedekind domains, K is the fraction ring of A, L is the fraction ring of K, L / K is a Galois extension.

Main definitions #

Main results #

References #

noncomputable def Ideal.ramificationIdxIn {A : Type u_1} [CommRing A] (p : Ideal A) (B : Type u_2) [CommRing B] [Algebra A B] :

If L / K is a Galois extension, it can be seen from the theorem Ideal.ramificationIdx_eq_of_IsGalois that all Ideal.ramificationIdx over a fixed maximal ideal p of A are the same, which we define as Ideal.ramificationIdxIn.

Equations
Instances For
    noncomputable def Ideal.inertiaDegIn {A : Type u_1} [CommRing A] (p : Ideal A) (B : Type u_2) [CommRing B] [Algebra A B] :

    If L / K is a Galois extension, it can be seen from the theorem Ideal.inertiaDeg_eq_of_IsGalois that all Ideal.inertiaDeg over a fixed maximal ideal p of A are the same, which we define as Ideal.inertiaDegIn.

    Equations
    Instances For
      @[simp]
      theorem Ideal.coe_smul_primesOver {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra A B] {p : Ideal A} (σ : B ≃ₐ[A] B) (P : (p.primesOver B)) :
      ↑(σ P) = map σ P
      @[simp]
      theorem Ideal.coe_smul_primesOver_mk {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra A B] {p : Ideal A} (σ : B ≃ₐ[A] B) (P : Ideal B) [P.IsPrime] [P.LiesOver p] :
      ↑(σ primesOver.mk p P) = map σ P
      instance Ideal.instMulActionAlgEquivElemPrimesOver_1 {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra A B] {p : Ideal A} (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [IsIntegralClosure B A L] [FiniteDimensional K L] :
      MulAction (L ≃ₐ[K] L) (p.primesOver B)
      Equations
      theorem Ideal.coe_smul_primesOver_eq_map_galRestrict {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra A B] {p : Ideal A} (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [IsIntegralClosure B A L] [FiniteDimensional K L] (σ : L ≃ₐ[K] L) (P : (p.primesOver B)) :
      ↑(σ P) = map ((galRestrict A K L B) σ) P
      theorem Ideal.coe_smul_primesOver_mk_eq_map_galRestrict {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] [Algebra A B] {p : Ideal A} (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [IsIntegralClosure B A L] [FiniteDimensional K L] (σ : L ≃ₐ[K] L) (P : Ideal B) [P.IsPrime] [P.LiesOver p] :
      ↑(σ primesOver.mk p P) = map ((galRestrict A K L B) σ) P
      theorem Ideal.exists_map_eq_of_isGalois {A : Type u_1} {B : Type u_2} [CommRing A] [IsDomain A] [IsIntegrallyClosed A] [CommRing B] [IsDomain B] [IsIntegrallyClosed B] [Algebra A B] [Module.Finite A B] (p : Ideal A) (P Q : Ideal B) [hPp : P.IsPrime] [hp : P.LiesOver p] [hQp : Q.IsPrime] [Q.LiesOver p] (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [FiniteDimensional K L] [IsGalois K L] :
      ∃ (σ : B ≃ₐ[A] B), map σ P = Q

      If p is a maximal ideal of A, P and Q are prime ideals lying over p, then there exists σ ∈ Aut (B / A) such that σ P = Q. In other words, the Galois group Gal(L / K) acts transitively on the set of all prime ideals lying over p.

      theorem Ideal.isPretransitive_of_isGalois {A : Type u_1} {B : Type u_2} [CommRing A] [IsDomain A] [IsIntegrallyClosed A] [CommRing B] [IsDomain B] [IsIntegrallyClosed B] [Algebra A B] [Module.Finite A B] (p : Ideal A) (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [FiniteDimensional K L] [IsGalois K L] :
      theorem Ideal.ramificationIdx_eq_of_isGalois {A : Type u_1} {B : Type u_2} [CommRing A] [IsDomain A] [IsIntegrallyClosed A] [CommRing B] [IsDomain B] [IsIntegrallyClosed B] [Algebra A B] [Module.Finite A B] (p : Ideal A) (P Q : Ideal B) [hPp : P.IsPrime] [hp : P.LiesOver p] [hQp : Q.IsPrime] [Q.LiesOver p] (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [FiniteDimensional K L] [IsGalois K L] :

      All the ramificationIdx over a fixed maximal ideal are the same.

      theorem Ideal.inertiaDeg_eq_of_isGalois {A : Type u_1} {B : Type u_2} [CommRing A] [IsDomain A] [IsIntegrallyClosed A] [CommRing B] [IsDomain B] [IsIntegrallyClosed B] [Algebra A B] [Module.Finite A B] (p : Ideal A) (P Q : Ideal B) [hPp : P.IsPrime] [hp : P.LiesOver p] [hQp : Q.IsPrime] [Q.LiesOver p] (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [FiniteDimensional K L] [p.IsMaximal] [IsGalois K L] :

      All the inertiaDeg over a fixed maximal ideal are the same.

      theorem Ideal.ramificationIdxIn_eq_ramificationIdx {A : Type u_1} {B : Type u_2} [CommRing A] [IsDomain A] [IsIntegrallyClosed A] [CommRing B] [IsDomain B] [IsIntegrallyClosed B] [Algebra A B] [Module.Finite A B] (p : Ideal A) (P : Ideal B) [hPp : P.IsPrime] [hp : P.LiesOver p] (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [FiniteDimensional K L] [IsGalois K L] :

      The ramificationIdxIn is equal to any ramification index over the same ideal.

      theorem Ideal.inertiaDegIn_eq_inertiaDeg {A : Type u_1} {B : Type u_2} [CommRing A] [IsDomain A] [IsIntegrallyClosed A] [CommRing B] [IsDomain B] [IsIntegrallyClosed B] [Algebra A B] [Module.Finite A B] (p : Ideal A) (P : Ideal B) [hPp : P.IsPrime] [hp : P.LiesOver p] (K : Type u_3) (L : Type u_4) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [IsFractionRing B L] [Algebra K L] [Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [FiniteDimensional K L] [p.IsMaximal] [IsGalois K L] :

      The inertiaDegIn is equal to any ramification index over the same ideal.

      The form of the fundamental identity in the case of Galois extension.