Documentation

Mathlib.Algebra.Group.Action.Pretransitive

Pretransitive group actions #

This file defines a typeclass for pretransitive group actions.

Notation #

Implementation details #

This file should avoid depending on other parts of GroupTheory, to avoid import cycles. More sophisticated lemmas belong in GroupTheory.GroupAction.

Tags #

group action

(Pre)transitive action #

M acts pretransitively on α if for any x y there is g such that g • x = y (or g +ᵥ x = y for an additive action). A transitive action should furthermore have α nonempty.

In this section we define typeclasses MulAction.IsPretransitive and AddAction.IsPretransitive and provide MulAction.exists_smul_eq/AddAction.exists_vadd_eq, MulAction.surjective_smul/AddAction.surjective_vadd as public interface to access this property. We do not provide typeclasses *Action.IsTransitive; users should assume [MulAction.IsPretransitive M α] [Nonempty α] instead.

class AddAction.IsPretransitive (M : Type u_5) (α : Type u_6) [VAdd M α] :

M acts pretransitively on α if for any x y there is g such that g +ᵥ x = y. A transitive action should furthermore have α nonempty.

  • exists_vadd_eq (x y : α) : ∃ (g : M), g +ᵥ x = y

    There is g such that g +ᵥ x = y.

Instances
    class MulAction.IsPretransitive (M : Type u_5) (α : Type u_6) [SMul M α] :

    M acts pretransitively on α if for any x y there is g such that g • x = y. A transitive action should furthermore have α nonempty.

    • exists_smul_eq (x y : α) : ∃ (g : M), g x = y

      There is g such that g • x = y.

    Instances
      theorem MulAction.exists_smul_eq (M : Type u_1) {α : Type u_3} [SMul M α] [IsPretransitive M α] (x y : α) :
      ∃ (m : M), m x = y
      theorem AddAction.exists_vadd_eq (M : Type u_1) {α : Type u_3} [VAdd M α] [IsPretransitive M α] (x y : α) :
      ∃ (m : M), m +ᵥ x = y
      theorem MulAction.surjective_smul (M : Type u_1) {α : Type u_3} [SMul M α] [IsPretransitive M α] (x : α) :
      Function.Surjective fun (c : M) => c x
      theorem AddAction.surjective_vadd (M : Type u_1) {α : Type u_3} [VAdd M α] [IsPretransitive M α] (x : α) :
      Function.Surjective fun (c : M) => c +ᵥ x

      The regular action of a group on itself is transitive.

      The regular action of a group on itself is transitive.

      theorem MulAction.isPretransitive_compHom {E : Type u_5} {F : Type u_6} {G : Type u_7} [Monoid E] [Monoid F] [MulAction F G] [IsPretransitive F G] {f : E →* F} (hf : Function.Surjective f) :

      If an action is transitive, then composing this action with a surjective homomorphism gives again a transitive action.

      theorem AddAction.isPretransitive_compHom {E : Type u_5} {F : Type u_6} {G : Type u_7} [AddMonoid E] [AddMonoid F] [AddAction F G] [IsPretransitive F G] {f : E →+ F} (hf : Function.Surjective f) :
      theorem MulAction.IsPretransitive.of_smul_eq {M : Type u_5} {N : Type u_6} {α : Type u_7} [SMul M α] [SMul N α] [IsPretransitive M α] (f : MN) (hf : ∀ {c : M} {x : α}, f c x = c x) :
      theorem AddAction.IsPretransitive.of_vadd_eq {M : Type u_5} {N : Type u_6} {α : Type u_7} [VAdd M α] [VAdd N α] [IsPretransitive M α] (f : MN) (hf : ∀ {c : M} {x : α}, f c +ᵥ x = c +ᵥ x) :
      theorem MulAction.IsPretransitive.of_compHom {M : Type u_5} {N : Type u_6} {α : Type u_7} [Monoid M] [Monoid N] [MulAction N α] (f : M →* N) [h : IsPretransitive M α] :
      theorem AddAction.IsPretransitive.of_compHom {M : Type u_5} {N : Type u_6} {α : Type u_7} [AddMonoid M] [AddMonoid N] [AddAction N α] (f : M →+ N) [h : IsPretransitive M α] :
      theorem MulAction.IsPretransitive.of_isScalarTower (M : Type u_5) {N : Type u_6} {α : Type u_7} [Monoid N] [SMul M N] [MulAction N α] [SMul M α] [IsScalarTower M N α] [IsPretransitive M α] :
      theorem AddAction.IsPretransitive.of_isScalarTower (M : Type u_5) {N : Type u_6} {α : Type u_7} [AddMonoid N] [VAdd M N] [AddAction N α] [VAdd M α] [VAddAssocClass M N α] [IsPretransitive M α] :

      Additive, Multiplicative #