Pretransitive group actions #
This file defines a typeclass for pretransitive group actions.
Notation #
Implementation details #
This file should avoid depending on other parts of GroupTheory
, to avoid import cycles.
More sophisticated lemmas belong in GroupTheory.GroupAction
.
Tags #
group action
(Pre)transitive action #
M
acts pretransitively on α
if for any x y
there is g
such that g • x = y
(or g +ᵥ x = y
for an additive action). A transitive action should furthermore have α
nonempty.
In this section we define typeclasses MulAction.IsPretransitive
and
AddAction.IsPretransitive
and provide MulAction.exists_smul_eq
/AddAction.exists_vadd_eq
,
MulAction.surjective_smul
/AddAction.surjective_vadd
as public interface to access this
property. We do not provide typeclasses *Action.IsTransitive
; users should assume
[MulAction.IsPretransitive M α] [Nonempty α]
instead.
M
acts pretransitively on α
if for any x y
there is g
such that g +ᵥ x = y
.
A transitive action should furthermore have α
nonempty.
There is
g
such thatg +ᵥ x = y
.
Instances
M
acts pretransitively on α
if for any x y
there is g
such that g • x = y
.
A transitive action should furthermore have α
nonempty.
There is
g
such thatg • x = y
.
Instances
The regular action of a group on itself is transitive.
Equations
- ⋯ = ⋯
The regular action of a group on itself is transitive.
Equations
- ⋯ = ⋯
If an action is transitive, then composing this action with a surjective homomorphism gives again a transitive action.
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯