Documentation

Mathlib.RingTheory.Ideal.Maximal

Ideals over a ring #

This file contains an assortment of definitions and results for Ideal R, the type of (left) ideals over a ring R. Note that over commutative rings, left ideals and two-sided ideals are equivalent.

Implementation notes #

Ideal R is implemented using Submodule R R, where is interpreted as *.

TODO #

Support right ideals, and two-sided ideals over non-commutative rings.

class Ideal.IsMaximal {α : Type u} [Semiring α] (I : Ideal α) :

An ideal is maximal if it is maximal in the collection of proper ideals.

  • out : IsCoatom I

    The maximal ideal is a coatom in the ordering on ideals; that is, it is not the entire ring, and there are no other proper ideals strictly containing it.

Instances
    theorem Ideal.isMaximal_def {α : Type u} [Semiring α] {I : Ideal α} :
    I.IsMaximal IsCoatom I
    theorem Ideal.IsMaximal.ne_top {α : Type u} [Semiring α] {I : Ideal α} (h : I.IsMaximal) :
    theorem Ideal.isMaximal_iff {α : Type u} [Semiring α] {I : Ideal α} :
    I.IsMaximal 1I ∀ (J : Ideal α) (x : α), I JxIx J1 J
    theorem Ideal.IsMaximal.eq_of_le {α : Type u} [Semiring α] {I J : Ideal α} (hI : I.IsMaximal) (hJ : J ) (IJ : I J) :
    I = J
    theorem Ideal.IsMaximal.coprime_of_ne {α : Type u} [Semiring α] {M M' : Ideal α} (hM : M.IsMaximal) (hM' : M'.IsMaximal) (hne : M M') :
    M M' =
    theorem Ideal.exists_le_maximal {α : Type u} [Semiring α] (I : Ideal α) (hI : I ) :
    ∃ (M : Ideal α), M.IsMaximal I M

    Krull's theorem: if I is an ideal that is not the whole ring, then it is included in some maximal ideal.

    theorem Ideal.exists_maximal (α : Type u) [Semiring α] [Nontrivial α] :
    ∃ (M : Ideal α), M.IsMaximal

    Krull's theorem: a nontrivial ring has a maximal ideal.

    theorem Ideal.maximal_of_no_maximal {α : Type u} [Semiring α] {P : Ideal α} (hmax : ∀ (m : Ideal α), P < m¬m.IsMaximal) (J : Ideal α) (hPJ : P < J) :
    J =

    If P is not properly contained in any maximal ideal then it is not properly contained in any proper ideal

    theorem Ideal.IsMaximal.exists_inv {α : Type u} [Semiring α] {I : Ideal α} (hI : I.IsMaximal) {x : α} (hx : xI) :
    ∃ (y : α), iI, y * x + i = 1
    theorem Ideal.sInf_isPrime_of_isChain {α : Type u} [Semiring α] {s : Set (Ideal α)} (hs : s.Nonempty) (hs' : IsChain (fun (x1 x2 : Ideal α) => x1 x2) s) (H : ps, p.IsPrime) :
    (sInf s).IsPrime
    theorem Ideal.span_singleton_prime {α : Type u} [CommSemiring α] {p : α} (hp : p 0) :
    (Ideal.span {p}).IsPrime Prime p
    theorem Ideal.IsMaximal.isPrime {α : Type u} [CommSemiring α] {I : Ideal α} (H : I.IsMaximal) :
    I.IsPrime
    @[instance 100]
    instance Ideal.IsMaximal.isPrime' {α : Type u} [CommSemiring α] (I : Ideal α) [_H : I.IsMaximal] :
    I.IsPrime
    theorem Ideal.exists_disjoint_powers_of_span_eq_top {α : Type u} [CommSemiring α] (s : Set α) (hs : Ideal.span s = ) (I : Ideal α) (hI : I ) :
    rs, Disjoint I (Submonoid.powers r)
    theorem Ideal.isPrime_of_maximally_disjoint {α : Type u} [CommSemiring α] (I : Ideal α) (S : Submonoid α) (disjoint : Disjoint I S) (maximally_disjoint : ∀ (J : Ideal α), I < J¬Disjoint J S) :
    I.IsPrime
    theorem Ideal.exists_le_prime_disjoint {α : Type u} [CommSemiring α] (I : Ideal α) (S : Submonoid α) (disjoint : Disjoint I S) :
    ∃ (p : Ideal α), p.IsPrime I p Disjoint p S
    theorem Ideal.exists_le_prime_nmem_of_isIdempotentElem {α : Type u} [CommSemiring α] (I : Ideal α) (a : α) (ha : IsIdempotentElem a) (haI : aI) :
    ∃ (p : Ideal α), p.IsPrime I p ap
    theorem Ideal.bot_isMaximal {K : Type u} [DivisionSemiring K] :
    .IsMaximal