Documentation

Mathlib.Geometry.Manifold.IntegralCurve.Transform

Translation and scaling of integral curves #

New integral curves may be constructed by translating or scaling the domain of an existing integral curve.

This file mirrors Mathlib/Analysis/ODE/Transform.

Reference #

Tags #

integral curve, vector field

Translation lemmas #

theorem IsMIntegralCurveOn.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } ( : IsMIntegralCurveOn γ v s) (dt : ) :
IsMIntegralCurveOn (γ fun (x : ) => x + dt) v {t : | t + dt s}
@[deprecated IsMIntegralCurveOn.comp_add (since := "2025-08-12")]
theorem IsIntegralCurveOn.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } ( : IsMIntegralCurveOn γ v s) (dt : ) :
IsMIntegralCurveOn (γ fun (x : ) => x + dt) v {t : | t + dt s}

Alias of IsMIntegralCurveOn.comp_add.

theorem isMIntegralCurveOn_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {dt : } :
IsMIntegralCurveOn γ v s IsMIntegralCurveOn (γ fun (x : ) => x + dt) v {t : | t + dt s}
@[deprecated isMIntegralCurveOn_comp_add (since := "2025-08-12")]
theorem isIntegralCurveOn_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {dt : } :
IsMIntegralCurveOn γ v s IsMIntegralCurveOn (γ fun (x : ) => x + dt) v {t : | t + dt s}

Alias of isMIntegralCurveOn_comp_add.

theorem isMIntegralCurveOn_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {dt : } :
IsMIntegralCurveOn γ v s IsMIntegralCurveOn (γ fun (x : ) => x - dt) v {t : | t - dt s}
@[deprecated isMIntegralCurveOn_comp_sub (since := "2025-08-12")]
theorem isIntegralCurveOn_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {dt : } :
IsMIntegralCurveOn γ v s IsMIntegralCurveOn (γ fun (x : ) => x - dt) v {t : | t - dt s}

Alias of isMIntegralCurveOn_comp_sub.

theorem IsMIntegralCurveAt.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } ( : IsMIntegralCurveAt γ v t₀) (dt : ) :
IsMIntegralCurveAt (γ fun (x : ) => x + dt) v (t₀ - dt)
@[deprecated IsMIntegralCurveAt.comp_add (since := "2025-08-12")]
theorem IsIntegralCurveAt.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } ( : IsMIntegralCurveAt γ v t₀) (dt : ) :
IsMIntegralCurveAt (γ fun (x : ) => x + dt) v (t₀ - dt)

Alias of IsMIntegralCurveAt.comp_add.

theorem isMIntegralCurveAt_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ dt : } :
IsMIntegralCurveAt γ v t₀ IsMIntegralCurveAt (γ fun (x : ) => x + dt) v (t₀ - dt)
@[deprecated isMIntegralCurveAt_comp_add (since := "2025-08-12")]
theorem isIntegralCurveAt_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ dt : } :
IsMIntegralCurveAt γ v t₀ IsMIntegralCurveAt (γ fun (x : ) => x + dt) v (t₀ - dt)

Alias of isMIntegralCurveAt_comp_add.

theorem isMIntegralCurveAt_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ dt : } :
IsMIntegralCurveAt γ v t₀ IsMIntegralCurveAt (γ fun (x : ) => x - dt) v (t₀ + dt)
@[deprecated isMIntegralCurveAt_comp_sub (since := "2025-08-12")]
theorem isIntegralCurveAt_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ dt : } :
IsMIntegralCurveAt γ v t₀ IsMIntegralCurveAt (γ fun (x : ) => x - dt) v (t₀ + dt)

Alias of isMIntegralCurveAt_comp_sub.

theorem IsMIntegralCurve.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} ( : IsMIntegralCurve γ v) (dt : ) :
IsMIntegralCurve (γ fun (x : ) => x + dt) v
@[deprecated IsMIntegralCurve.comp_add (since := "2025-08-12")]
theorem IsIntegralCurve.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} ( : IsMIntegralCurve γ v) (dt : ) :
IsMIntegralCurve (γ fun (x : ) => x + dt) v

Alias of IsMIntegralCurve.comp_add.

theorem isMIntegralCurve_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {dt : } :
IsMIntegralCurve γ v IsMIntegralCurve (γ fun (x : ) => x + dt) v
@[deprecated isMIntegralCurve_comp_add (since := "2025-08-12")]
theorem isIntegralCurve_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {dt : } :
IsMIntegralCurve γ v IsMIntegralCurve (γ fun (x : ) => x + dt) v

Alias of isMIntegralCurve_comp_add.

theorem isMIntegralCurve_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {dt : } :
IsMIntegralCurve γ v IsMIntegralCurve (γ fun (x : ) => x - dt) v
@[deprecated isMIntegralCurve_comp_sub (since := "2025-08-12")]
theorem isIntegralCurve_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {dt : } :
IsMIntegralCurve γ v IsMIntegralCurve (γ fun (x : ) => x - dt) v

Alias of isMIntegralCurve_comp_sub.

Scaling lemmas #

theorem IsMIntegralCurveOn.comp_mul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } ( : IsMIntegralCurveOn γ v s) (a : ) :
IsMIntegralCurveOn (γ fun (x : ) => x * a) (a v) {t : | t * a s}
@[deprecated IsMIntegralCurveOn.comp_mul (since := "2025-08-12")]
theorem IsIntegralCurveOn.comp_mul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } ( : IsMIntegralCurveOn γ v s) (a : ) :
IsMIntegralCurveOn (γ fun (x : ) => x * a) (a v) {t : | t * a s}

Alias of IsMIntegralCurveOn.comp_mul.

theorem isMIntegralCurveOn_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {a : } (ha : a 0) :
IsMIntegralCurveOn γ v s IsMIntegralCurveOn (γ fun (x : ) => x * a) (a v) {t : | t * a s}
@[deprecated isMIntegralCurveOn_comp_mul_ne_zero (since := "2025-08-12")]
theorem isIntegralCurveOn_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {a : } (ha : a 0) :
IsMIntegralCurveOn γ v s IsMIntegralCurveOn (γ fun (x : ) => x * a) (a v) {t : | t * a s}

Alias of isMIntegralCurveOn_comp_mul_ne_zero.

theorem IsMIntegralCurveAt.comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } ( : IsMIntegralCurveAt γ v t₀) {a : } (ha : a 0) :
IsMIntegralCurveAt (γ fun (x : ) => x * a) (a v) (t₀ / a)
@[deprecated IsMIntegralCurveAt.comp_mul_ne_zero (since := "2025-08-12")]
theorem IsIntegralCurveAt.comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } ( : IsMIntegralCurveAt γ v t₀) {a : } (ha : a 0) :
IsMIntegralCurveAt (γ fun (x : ) => x * a) (a v) (t₀ / a)

Alias of IsMIntegralCurveAt.comp_mul_ne_zero.

theorem isMIntegralCurveAt_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ a : } (ha : a 0) :
IsMIntegralCurveAt γ v t₀ IsMIntegralCurveAt (γ fun (x : ) => x * a) (a v) (t₀ / a)
@[deprecated isMIntegralCurveAt_comp_mul_ne_zero (since := "2025-08-12")]
theorem isIntegralCurveAt_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ a : } (ha : a 0) :
IsMIntegralCurveAt γ v t₀ IsMIntegralCurveAt (γ fun (x : ) => x * a) (a v) (t₀ / a)

Alias of isMIntegralCurveAt_comp_mul_ne_zero.

theorem IsMIntegralCurve.comp_mul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} ( : IsMIntegralCurve γ v) (a : ) :
IsMIntegralCurve (γ fun (x : ) => x * a) (a v)
@[deprecated IsMIntegralCurve.comp_mul (since := "2025-08-12")]
theorem IsIntegralCurve.comp_mul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} ( : IsMIntegralCurve γ v) (a : ) :
IsMIntegralCurve (γ fun (x : ) => x * a) (a v)

Alias of IsMIntegralCurve.comp_mul.

theorem isMIntegralCurve_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {a : } (ha : a 0) :
IsMIntegralCurve γ v IsMIntegralCurve (γ fun (x : ) => x * a) (a v)
@[deprecated isMIntegralCurve_comp_mul_ne_zero (since := "2025-08-12")]
theorem isIntegralCurve_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {a : } (ha : a 0) :
IsMIntegralCurve γ v IsMIntegralCurve (γ fun (x : ) => x * a) (a v)

Alias of isMIntegralCurve_comp_mul_ne_zero.

theorem isMIntegralCurve_const {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {v : (x : M) → TangentSpace I x} {x : M} (h : v x = 0) :
IsMIntegralCurve (fun (x_1 : ) => x) v

If the vector field v vanishes at x₀, then the constant curve at x₀ is a global integral curve of v.

@[deprecated isMIntegralCurve_const (since := "2025-08-12")]
theorem isIntegralCurve_const {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {v : (x : M) → TangentSpace I x} {x : M} (h : v x = 0) :
IsMIntegralCurve (fun (x_1 : ) => x) v

Alias of isMIntegralCurve_const.


If the vector field v vanishes at x₀, then the constant curve at x₀ is a global integral curve of v.