Documentation

Mathlib.Geometry.Manifold.IntegralCurve.Transform

Translation and scaling of integral curves #

New integral curves may be constructed by translating or scaling the domain of an existing integral curve.

Reference #

Tags #

integral curve, vector field

Translation lemmas #

theorem IsIntegralCurveOn.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } (hγ : IsIntegralCurveOn γ v s) (dt : ) :
IsIntegralCurveOn (γ fun (x : ) => x + dt) v (-dt +ᵥ s)
theorem isIntegralCurveOn_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {dt : } :
IsIntegralCurveOn γ v s IsIntegralCurveOn (γ fun (x : ) => x + dt) v (-dt +ᵥ s)
theorem isIntegralCurveOn_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {dt : } :
IsIntegralCurveOn γ v s IsIntegralCurveOn (γ fun (x : ) => x - dt) v (dt +ᵥ s)
theorem IsIntegralCurveAt.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } (hγ : IsIntegralCurveAt γ v t₀) (dt : ) :
IsIntegralCurveAt (γ fun (x : ) => x + dt) v (t₀ - dt)
theorem isIntegralCurveAt_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ dt : } :
IsIntegralCurveAt γ v t₀ IsIntegralCurveAt (γ fun (x : ) => x + dt) v (t₀ - dt)
theorem isIntegralCurveAt_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ dt : } :
IsIntegralCurveAt γ v t₀ IsIntegralCurveAt (γ fun (x : ) => x - dt) v (t₀ + dt)
theorem IsIntegralCurve.comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} (hγ : IsIntegralCurve γ v) (dt : ) :
IsIntegralCurve (γ fun (x : ) => x + dt) v
theorem isIntegralCurve_comp_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {dt : } :
IsIntegralCurve γ v IsIntegralCurve (γ fun (x : ) => x + dt) v
theorem isIntegralCurve_comp_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {dt : } :
IsIntegralCurve γ v IsIntegralCurve (γ fun (x : ) => x - dt) v

Scaling lemmas #

theorem IsIntegralCurveOn.comp_mul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } (hγ : IsIntegralCurveOn γ v s) (a : ) :
IsIntegralCurveOn (γ fun (x : ) => x * a) (a v) {t : | t * a s}
theorem isIntegralCurveOn_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {s : Set } {a : } (ha : a 0) :
IsIntegralCurveOn γ v s IsIntegralCurveOn (γ fun (x : ) => x * a) (a v) {t : | t * a s}
theorem IsIntegralCurveAt.comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ : } (hγ : IsIntegralCurveAt γ v t₀) {a : } (ha : a 0) :
IsIntegralCurveAt (γ fun (x : ) => x * a) (a v) (t₀ / a)
theorem isIntegralCurveAt_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {t₀ a : } (ha : a 0) :
IsIntegralCurveAt γ v t₀ IsIntegralCurveAt (γ fun (x : ) => x * a) (a v) (t₀ / a)
theorem IsIntegralCurve.comp_mul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} (hγ : IsIntegralCurve γ v) (a : ) :
IsIntegralCurve (γ fun (x : ) => x * a) (a v)
theorem isIntegralCurve_comp_mul_ne_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {γ : M} {v : (x : M) → TangentSpace I x} {a : } (ha : a 0) :
IsIntegralCurve γ v IsIntegralCurve (γ fun (x : ) => x * a) (a v)
theorem isIntegralCurve_const {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {H : Type u_2} [TopologicalSpace H] {I : ModelWithCorners E H} {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] {v : (x : M) → TangentSpace I x} {x : M} (h : v x = 0) :
IsIntegralCurve (fun (x_1 : ) => x) v

If the vector field v vanishes at x₀, then the constant curve at x₀ is a global integral curve of v.