Documentation

Mathlib.Probability.Kernel.Composition.CompProd

Composition-product of kernels #

We define the composition-product κ ⊗ₖ η of two s-finite kernels κ : Kernel α β and η : Kernel (α × β) γ, a kernel from α to β × γ.

A note on names: The composition-product Kernel α β → Kernel (α × β) γ → Kernel α (β × γ) is named composition in [Kal21] and product on the wikipedia article on transition kernels. Most papers studying categories of kernels call composition the map we call composition. We adopt that convention because it fits better with the use of the name comp elsewhere in mathlib.

Main definitions #

Main statements #

Notation #

Composition-Product of kernels #

We define a kernel composition-product compProd : Kernel α β → Kernel (α × β) γ → Kernel α (β × γ).

theorem ProbabilityTheory.Kernel.compProd_def {α : Type u_4} {β : Type u_5} {γ : Type u_6} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) :
@[irreducible]
noncomputable def ProbabilityTheory.Kernel.compProd {α : Type u_4} {β : Type u_5} {γ : Type u_6} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) :
Kernel α (β × γ)

Composition-Product of kernels. For s-finite kernels, it satisfies ∫⁻ bc, f bc ∂(compProd κ η a) = ∫⁻ b, ∫⁻ c, f (b, c) ∂(η (a, b)) ∂(κ a) (see ProbabilityTheory.Kernel.lintegral_compProd). If either of the kernels is not s-finite, compProd is given the junk value 0.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Composition-Product of kernels. For s-finite kernels, it satisfies ∫⁻ bc, f bc ∂(compProd κ η a) = ∫⁻ b, ∫⁻ c, f (b, c) ∂(η (a, b)) ∂(κ a) (see ProbabilityTheory.Kernel.lintegral_compProd). If either of the kernels is not s-finite, compProd is given the junk value 0.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem ProbabilityTheory.Kernel.compProd_of_not_isSFiniteKernel_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) (h : ¬IsSFiniteKernel κ) :
      κ.compProd η = 0
      @[simp]
      theorem ProbabilityTheory.Kernel.compProd_of_not_isSFiniteKernel_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) (h : ¬IsSFiniteKernel η) :
      κ.compProd η = 0
      theorem ProbabilityTheory.Kernel.compProd_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {s : Set (β × γ)} (hs : MeasurableSet s) (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) :
      ((κ.compProd η) a) s = ∫⁻ (b : β), (η (a, b)) (Prod.mk b ⁻¹' s) κ a
      theorem ProbabilityTheory.Kernel.le_compProd_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (s : Set (β × γ)) :
      ∫⁻ (b : β), (η (a, b)) {c : γ | (b, c) s} κ a ((κ.compProd η) a) s
      @[simp]
      theorem ProbabilityTheory.Kernel.compProd_apply_univ {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel (α × β) γ} [IsSFiniteKernel κ] [IsMarkovKernel η] {a : α} :
      ((κ.compProd η) a) Set.univ = (κ a) Set.univ
      theorem ProbabilityTheory.Kernel.compProd_apply_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel (α × β) γ} [IsSFiniteKernel κ] [IsSFiniteKernel η] {a : α} {s : Set β} {t : Set γ} (hs : MeasurableSet s) (ht : MeasurableSet t) :
      ((κ.compProd η) a) (s ×ˢ t) = ∫⁻ (b : β) in s, (η (a, b)) t κ a
      theorem ProbabilityTheory.Kernel.compProd_congr {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} {η η' : Kernel (α × β) γ} [IsSFiniteKernel η] [IsSFiniteKernel η'] (h : ∀ (a : α), ∀ᵐ (b : β) κ a, η (a, b) = η' (a, b)) :
      κ.compProd η = κ.compProd η'
      @[simp]
      theorem ProbabilityTheory.Kernel.compProd_zero_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel (α × β) γ) :
      compProd 0 κ = 0
      @[simp]
      theorem ProbabilityTheory.Kernel.compProd_zero_right {α : Type u_1} {β : Type u_2} { : MeasurableSpace α} { : MeasurableSpace β} (κ : Kernel α β) (γ : Type u_4) { : MeasurableSpace γ} :
      κ.compProd 0 = 0
      theorem ProbabilityTheory.Kernel.compProd_eq_zero_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} {η : Kernel (α × β) γ} [IsSFiniteKernel κ] [IsSFiniteKernel η] :
      κ.compProd η = 0 ∀ (a : α), ∀ᵐ (b : β) κ a, η (a, b) = 0
      theorem ProbabilityTheory.Kernel.compProd_preimage_fst {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {s : Set β} (hs : MeasurableSet s) (κ : Kernel α β) (η : Kernel (α × β) γ) [IsSFiniteKernel κ] [IsMarkovKernel η] (x : α) :
      ((κ.compProd η) x) (Prod.fst ⁻¹' s) = (κ x) s
      theorem ProbabilityTheory.Kernel.compProd_deterministic_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} [MeasurableSingletonClass γ] {f : α × βγ} (hf : Measurable f) {s : Set (β × γ)} (hs : MeasurableSet s) (κ : Kernel α β) [IsSFiniteKernel κ] (x : α) :
      ((κ.compProd (deterministic f hf)) x) s = (κ x) {b : β | (b, f (x, b)) s}

      ae filter of the composition-product #

      theorem ProbabilityTheory.Kernel.ae_kernel_lt_top {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {s : Set (β × γ)} {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] (a : α) (h2s : ((κ.compProd η) a) s ) :
      ∀ᵐ (b : β) κ a, (η (a, b)) (Prod.mk b ⁻¹' s) <
      theorem ProbabilityTheory.Kernel.compProd_null {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {s : Set (β × γ)} {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] (a : α) (hs : MeasurableSet s) :
      ((κ.compProd η) a) s = 0 (fun (b : β) => (η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[κ a] 0
      theorem ProbabilityTheory.Kernel.ae_null_of_compProd_null {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {s : Set (β × γ)} {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] {a : α} (h : ((κ.compProd η) a) s = 0) :
      (fun (b : β) => (η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[κ a] 0
      theorem ProbabilityTheory.Kernel.ae_ae_of_ae_compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] {a : α} {p : β × γProp} (h : ∀ᵐ (bc : β × γ) (κ.compProd η) a, p bc) :
      ∀ᵐ (b : β) κ a, ∀ᵐ (c : γ) η (a, b), p (b, c)
      theorem ProbabilityTheory.Kernel.ae_compProd_of_ae_ae {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {a : α} {κ : Kernel α β} {η : Kernel (α × β) γ} {p : β × γProp} (hp : MeasurableSet {x : β × γ | p x}) (h : ∀ᵐ (b : β) κ a, ∀ᵐ (c : γ) η (a, b), p (b, c)) :
      ∀ᵐ (bc : β × γ) (κ.compProd η) a, p bc
      theorem ProbabilityTheory.Kernel.ae_compProd_iff {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] {a : α} {p : β × γProp} (hp : MeasurableSet {x : β × γ | p x}) :
      (∀ᵐ (bc : β × γ) (κ.compProd η) a, p bc) ∀ᵐ (b : β) κ a, ∀ᵐ (c : γ) η (a, b), p (b, c)
      theorem ProbabilityTheory.Kernel.compProd_restrict {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] {s : Set β} {t : Set γ} (hs : MeasurableSet s) (ht : MeasurableSet t) :
      (κ.restrict hs).compProd (η.restrict ht) = (κ.compProd η).restrict
      theorem ProbabilityTheory.Kernel.compProd_restrict_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] {s : Set β} (hs : MeasurableSet s) :
      (κ.restrict hs).compProd η = (κ.compProd η).restrict
      theorem ProbabilityTheory.Kernel.compProd_restrict_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {κ : Kernel α β} [IsSFiniteKernel κ] {η : Kernel (α × β) γ} [IsSFiniteKernel η] {t : Set γ} (ht : MeasurableSet t) :
      κ.compProd (η.restrict ht) = (κ.compProd η).restrict

      Lebesgue integral #

      theorem ProbabilityTheory.Kernel.lintegral_compProd' {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) {f : βγENNReal} (hf : Measurable (Function.uncurry f)) :
      ∫⁻ (bc : β × γ), f bc.1 bc.2 (κ.compProd η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c η (a, b) κ a

      Lebesgue integral against the composition-product of two kernels.

      theorem ProbabilityTheory.Kernel.lintegral_compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) {f : β × γENNReal} (hf : Measurable f) :
      ∫⁻ (bc : β × γ), f bc (κ.compProd η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f (b, c) η (a, b) κ a

      Lebesgue integral against the composition-product of two kernels.

      theorem ProbabilityTheory.Kernel.lintegral_compProd₀ {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) {f : β × γENNReal} (hf : AEMeasurable f ((κ.compProd η) a)) :
      ∫⁻ (z : β × γ), f z (κ.compProd η) a = ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) η (a, x) κ a

      Lebesgue integral against the composition-product of two kernels.

      theorem ProbabilityTheory.Kernel.setLIntegral_compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) {f : β × γENNReal} (hf : Measurable f) {s : Set β} {t : Set γ} (hs : MeasurableSet s) (ht : MeasurableSet t) :
      ∫⁻ (z : β × γ) in s ×ˢ t, f z (κ.compProd η) a = ∫⁻ (x : β) in s, ∫⁻ (y : γ) in t, f (x, y) η (a, x) κ a
      theorem ProbabilityTheory.Kernel.setLIntegral_compProd_univ_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) {f : β × γENNReal} (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) :
      ∫⁻ (z : β × γ) in s ×ˢ Set.univ, f z (κ.compProd η) a = ∫⁻ (x : β) in s, ∫⁻ (y : γ), f (x, y) η (a, x) κ a
      theorem ProbabilityTheory.Kernel.setLIntegral_compProd_univ_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) {f : β × γENNReal} (hf : Measurable f) {t : Set γ} (ht : MeasurableSet t) :
      ∫⁻ (z : β × γ) in Set.univ ×ˢ t, f z (κ.compProd η) a = ∫⁻ (x : β), ∫⁻ (y : γ) in t, f (x, y) η (a, x) κ a
      theorem ProbabilityTheory.Kernel.compProd_eq_sum_compProd_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) :
      κ.compProd η = Kernel.sum fun (n : ) => (κ.seq n).compProd η
      theorem ProbabilityTheory.Kernel.compProd_eq_sum_compProd_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) [IsSFiniteKernel η] :
      κ.compProd η = Kernel.sum fun (n : ) => κ.compProd (η.seq n)
      theorem ProbabilityTheory.Kernel.compProd_eq_sum_compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] :
      κ.compProd η = Kernel.sum fun (n : ) => Kernel.sum fun (m : ) => (κ.seq n).compProd (η.seq m)
      theorem ProbabilityTheory.Kernel.compProd_eq_tsum_compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {s : Set (β × γ)} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] (a : α) (hs : MeasurableSet s) :
      ((κ.compProd η) a) s = ∑' (n : ) (m : ), (((κ.seq n).compProd (η.seq m)) a) s
      instance ProbabilityTheory.Kernel.IsMarkovKernel.compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsMarkovKernel κ] (η : Kernel (α × β) γ) [IsMarkovKernel η] :
      instance ProbabilityTheory.Kernel.IsZeroOrMarkovKernel.compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsZeroOrMarkovKernel κ] (η : Kernel (α × β) γ) [IsZeroOrMarkovKernel η] :
      theorem ProbabilityTheory.Kernel.compProd_apply_univ_le {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) [IsFiniteKernel η] (a : α) :
      ((κ.compProd η) a) Set.univ (κ a) Set.univ * η.bound
      instance ProbabilityTheory.Kernel.IsFiniteKernel.compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) [IsFiniteKernel κ] (η : Kernel (α × β) γ) [IsFiniteKernel η] :
      instance ProbabilityTheory.Kernel.IsSFiniteKernel.compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) :
      theorem ProbabilityTheory.Kernel.compProd_assoc {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {δ : Type u_4} { : MeasurableSpace δ} {κ : Kernel α β} {η : Kernel (α × β) γ} {ξ : Kernel (α × β × γ) δ} :

      Kernel.compProd is associative. We have to insert MeasurableEquiv.prodAssoc in two places because the products of types α × β × γ and (α × β) × γ are different.

      theorem ProbabilityTheory.Kernel.compProd_add_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (μ κ : Kernel α β) (η : Kernel (α × β) γ) [IsSFiniteKernel μ] [IsSFiniteKernel κ] :
      (μ + κ).compProd η = μ.compProd η + κ.compProd η
      theorem ProbabilityTheory.Kernel.compProd_add_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (μ : Kernel α β) (κ η : Kernel (α × β) γ) [IsSFiniteKernel κ] [IsSFiniteKernel η] :
      μ.compProd (κ + η) = μ.compProd κ + μ.compProd η
      theorem ProbabilityTheory.Kernel.compProd_sum_left {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {ι : Type u_4} [Countable ι] {κ : ιKernel α β} {η : Kernel (α × β) γ} [∀ (i : ι), IsSFiniteKernel (κ i)] :
      (Kernel.sum κ).compProd η = Kernel.sum fun (i : ι) => (κ i).compProd η
      theorem ProbabilityTheory.Kernel.compProd_sum_right {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {ι : Type u_4} [Countable ι] {κ : Kernel α β} {η : ιKernel (α × β) γ} [∀ (i : ι), IsSFiniteKernel (η i)] :
      κ.compProd (Kernel.sum η) = Kernel.sum fun (i : ι) => κ.compProd (η i)
      theorem ProbabilityTheory.Kernel.comapRight_compProd_id_prod {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} {δ : Type u_4} { : MeasurableSpace δ} (κ : Kernel α β) [IsSFiniteKernel κ] (η : Kernel (α × β) γ) [IsSFiniteKernel η] {f : δγ} (hf : MeasurableEmbedding f) :
      (κ.compProd η).comapRight = κ.compProd (η.comapRight hf)
      theorem ProbabilityTheory.Kernel.fst_compProd_apply {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) [IsSFiniteKernel κ] [IsSFiniteKernel η] (x : α) {s : Set β} (hs : MeasurableSet s) :
      ((κ.compProd η).fst x) s = ∫⁻ (b : β), s.indicator (fun (b : β) => (η (x, b)) Set.univ) b κ x

      If η is a Markov kernel, use instead fst_compProd to get (κ ⊗ₖ η).fst = κ.

      @[simp]
      theorem ProbabilityTheory.Kernel.fst_compProd {α : Type u_1} {β : Type u_2} {γ : Type u_3} { : MeasurableSpace α} { : MeasurableSpace β} { : MeasurableSpace γ} (κ : Kernel α β) (η : Kernel (α × β) γ) [IsSFiniteKernel κ] [IsMarkovKernel η] :
      (κ.compProd η).fst = κ