Documentation

Mathlib.Probability.Kernel.Basic

Basic kernels #

This file contains basic results about kernels in general and definitions of some particular kernels.

Main definitions #

Main statements #

noncomputable def ProbabilityTheory.Kernel.deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (f : αβ) (hf : Measurable f) :

Kernel which to a associates the dirac measure at f a. This is a Markov kernel.

Equations
Instances For
    theorem ProbabilityTheory.Kernel.deterministic_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : αβ} (hf : Measurable f) (a : α) :
    theorem ProbabilityTheory.Kernel.deterministic_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : αβ} (hf : Measurable f) (a : α) {s : Set β} (hs : MeasurableSet s) :
    ((ProbabilityTheory.Kernel.deterministic f hf) a) s = s.indicator (fun (x : β) => 1) (f a)
    theorem ProbabilityTheory.Kernel.lintegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) :
    ∫⁻ (x : β), f x(ProbabilityTheory.Kernel.deterministic g hg) a = f (g a)
    @[simp]
    theorem ProbabilityTheory.Kernel.lintegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] :
    ∫⁻ (x : β), f x(ProbabilityTheory.Kernel.deterministic g hg) a = f (g a)
    theorem ProbabilityTheory.Kernel.setLIntegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) [Decidable (g a s)] :
    ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0
    @[deprecated ProbabilityTheory.Kernel.setLIntegral_deterministic']
    theorem ProbabilityTheory.Kernel.set_lintegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) [Decidable (g a s)] :
    ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0

    Alias of ProbabilityTheory.Kernel.setLIntegral_deterministic'.

    @[simp]
    theorem ProbabilityTheory.Kernel.setLIntegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] (s : Set β) [Decidable (g a s)] :
    ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0
    @[deprecated ProbabilityTheory.Kernel.setLIntegral_deterministic]
    theorem ProbabilityTheory.Kernel.set_lintegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] (s : Set β) [Decidable (g a s)] :
    ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0

    Alias of ProbabilityTheory.Kernel.setLIntegral_deterministic.

    Constant kernel, which always returns the same measure.

    Equations
    Instances For
      @[simp]
      theorem ProbabilityTheory.Kernel.const_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (μβ : MeasureTheory.Measure β) (a : α) :
      @[simp]
      @[simp]
      theorem ProbabilityTheory.Kernel.lintegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} :
      ∫⁻ (x : β), f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β), f xμ
      @[simp]
      theorem ProbabilityTheory.Kernel.setLIntegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} {s : Set β} :
      ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β) in s, f xμ
      @[deprecated ProbabilityTheory.Kernel.setLIntegral_const]
      theorem ProbabilityTheory.Kernel.set_lintegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} {s : Set β} :
      ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β) in s, f xμ

      Alias of ProbabilityTheory.Kernel.setLIntegral_const.

      In a countable space with measurable singletons, every function α → MeasureTheory.Measure β defines a kernel.

      Equations
      Instances For
        noncomputable def ProbabilityTheory.Kernel.restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) :

        Kernel given by the restriction of the measures in the image of a kernel to a set.

        Equations
        • κ.restrict hs = { toFun := fun (a : α) => (κ a).restrict s, measurable' := }
        Instances For
          theorem ProbabilityTheory.Kernel.restrict_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) :
          (κ.restrict hs) a = (κ a).restrict s
          theorem ProbabilityTheory.Kernel.restrict_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s t : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (ht : MeasurableSet t) :
          ((κ.restrict hs) a) t = (κ a) (t s)
          @[simp]
          theorem ProbabilityTheory.Kernel.restrict_univ {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} :
          κ.restrict = κ
          @[simp]
          theorem ProbabilityTheory.Kernel.lintegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) :
          ∫⁻ (b : β), f b(κ.restrict hs) a = ∫⁻ (b : β) in s, f bκ a
          @[simp]
          theorem ProbabilityTheory.Kernel.setLIntegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) (t : Set β) :
          ∫⁻ (b : β) in t, f b(κ.restrict hs) a = ∫⁻ (b : β) in t s, f bκ a
          @[deprecated ProbabilityTheory.Kernel.setLIntegral_restrict]
          theorem ProbabilityTheory.Kernel.set_lintegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) (t : Set β) :
          ∫⁻ (b : β) in t, f b(κ.restrict hs) a = ∫⁻ (b : β) in t s, f bκ a

          Alias of ProbabilityTheory.Kernel.setLIntegral_restrict.

          Equations
          • =
          noncomputable def ProbabilityTheory.Kernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) :

          Kernel with value (κ a).comap f, for a measurable embedding f. That is, for a measurable set t : Set β, ProbabilityTheory.Kernel.comapRight κ hf a t = κ a (f '' t).

          Equations
          Instances For
            theorem ProbabilityTheory.Kernel.comapRight_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (a : α) :
            (κ.comapRight hf) a = MeasureTheory.Measure.comap f (κ a)
            theorem ProbabilityTheory.Kernel.comapRight_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (a : α) {t : Set γ} (ht : MeasurableSet t) :
            ((κ.comapRight hf) a) t = (κ a) (f '' t)
            @[simp]
            theorem ProbabilityTheory.Kernel.comapRight_id {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (κ : ProbabilityTheory.Kernel α β) :
            κ.comapRight = κ
            theorem ProbabilityTheory.Kernel.IsMarkovKernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (hκ : ∀ (a : α), (κ a) (Set.range f) = 1) :
            instance ProbabilityTheory.Kernel.IsFiniteKernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] (hf : MeasurableEmbedding f) :
            Equations
            • =
            instance ProbabilityTheory.Kernel.IsSFiniteKernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsSFiniteKernel κ] (hf : MeasurableEmbedding f) :
            Equations
            • =
            def ProbabilityTheory.Kernel.piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set α} [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) (κ η : ProbabilityTheory.Kernel α β) :

            ProbabilityTheory.Kernel.piecewise hs κ η is the kernel equal to κ on the measurable set s and to η on its complement.

            Equations
            Instances For
              theorem ProbabilityTheory.Kernel.piecewise_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) :
              (ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then κ a else η a
              theorem ProbabilityTheory.Kernel.piecewise_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (t : Set β) :
              ((ProbabilityTheory.Kernel.piecewise hs κ η) a) t = if a s then (κ a) t else (η a) t
              theorem ProbabilityTheory.Kernel.lintegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) :
              ∫⁻ (b : β), g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β), g bκ a else ∫⁻ (b : β), g bη a
              theorem ProbabilityTheory.Kernel.setLIntegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) (t : Set β) :
              ∫⁻ (b : β) in t, g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β) in t, g bκ a else ∫⁻ (b : β) in t, g bη a
              @[deprecated ProbabilityTheory.Kernel.setLIntegral_piecewise]
              theorem ProbabilityTheory.Kernel.set_lintegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) (t : Set β) :
              ∫⁻ (b : β) in t, g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β) in t, g bκ a else ∫⁻ (b : β) in t, g bη a

              Alias of ProbabilityTheory.Kernel.setLIntegral_piecewise.

              theorem ProbabilityTheory.Kernel.exists_ae_eq_isMarkovKernel {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {μ : MeasureTheory.Measure α} (h : ∀ᵐ (a : α) ∂μ, MeasureTheory.IsProbabilityMeasure (κ a)) (h' : μ 0) :