Documentation

Mathlib.Probability.Kernel.Basic

Basic kernels #

This file contains basic results about kernels in general and definitions of some particular kernels.

Main definitions #

Main statements #

noncomputable def ProbabilityTheory.Kernel.deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (f : αβ) (hf : Measurable f) :

Kernel which to a associates the dirac measure at f a. This is a Markov kernel.

Equations
Instances For
    theorem ProbabilityTheory.Kernel.deterministic_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : αβ} (hf : Measurable f) (a : α) :
    theorem ProbabilityTheory.Kernel.deterministic_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : αβ} (hf : Measurable f) (a : α) {s : Set β} (hs : MeasurableSet s) :
    ((ProbabilityTheory.Kernel.deterministic f hf) a) s = s.indicator (fun (x : β) => 1) (f a)
    theorem ProbabilityTheory.Kernel.lintegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) :
    ∫⁻ (x : β), f x(ProbabilityTheory.Kernel.deterministic g hg) a = f (g a)
    @[simp]
    theorem ProbabilityTheory.Kernel.lintegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] :
    ∫⁻ (x : β), f x(ProbabilityTheory.Kernel.deterministic g hg) a = f (g a)
    theorem ProbabilityTheory.Kernel.setLIntegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) [Decidable (g a s)] :
    ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0
    @[deprecated ProbabilityTheory.Kernel.setLIntegral_deterministic']
    theorem ProbabilityTheory.Kernel.set_lintegral_deterministic' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) (hf : Measurable f) {s : Set β} (hs : MeasurableSet s) [Decidable (g a s)] :
    ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0

    Alias of ProbabilityTheory.Kernel.setLIntegral_deterministic'.

    @[simp]
    theorem ProbabilityTheory.Kernel.setLIntegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] (s : Set β) [Decidable (g a s)] :
    ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0
    @[deprecated ProbabilityTheory.Kernel.setLIntegral_deterministic]
    theorem ProbabilityTheory.Kernel.set_lintegral_deterministic {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {g : αβ} {a : α} (hg : Measurable g) [MeasurableSingletonClass β] (s : Set β) [Decidable (g a s)] :
    ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.deterministic g hg) a = if g a s then f (g a) else 0

    Alias of ProbabilityTheory.Kernel.setLIntegral_deterministic.

    noncomputable def ProbabilityTheory.Kernel.id {α : Type u_1} {mα : MeasurableSpace α} :

    The identity kernel, that maps x : α to the Dirac measure at x.

    Equations
    Instances For
      theorem ProbabilityTheory.Kernel.id_apply {α : Type u_1} {mα : MeasurableSpace α} (a : α) :
      ProbabilityTheory.Kernel.id a = MeasureTheory.Measure.dirac a
      noncomputable def ProbabilityTheory.Kernel.copy (α : Type u_4) [MeasurableSpace α] :

      The deterministic kernel that maps x : α to the Dirac measure at (x, x) : α × α.

      Equations
      Instances For

        The Markov kernel to the Unit type.

        Equations
        Instances For
          noncomputable def ProbabilityTheory.Kernel.swap (α : Type u_4) (β : Type u_5) [MeasurableSpace α] [MeasurableSpace β] :

          The deterministic kernel that maps (x, y) to the Dirac measure at (y, x).

          Equations
          Instances For
            theorem ProbabilityTheory.Kernel.swap_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (ab : α × β) :

            See swap_apply' for a fully applied version of this lemma.

            theorem ProbabilityTheory.Kernel.swap_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (ab : α × β) {s : Set (β × α)} (hs : MeasurableSet s) :
            ((ProbabilityTheory.Kernel.swap α β) ab) s = s.indicator 1 ab.swap

            See swap_apply for a partially applied version of this lemma.

            Constant kernel, which always returns the same measure.

            Equations
            Instances For
              @[simp]
              theorem ProbabilityTheory.Kernel.const_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (μβ : MeasureTheory.Measure β) (a : α) :
              @[simp]
              @[simp]
              theorem ProbabilityTheory.Kernel.lintegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} :
              ∫⁻ (x : β), f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β), f xμ
              @[simp]
              theorem ProbabilityTheory.Kernel.setLIntegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} {s : Set β} :
              ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β) in s, f xμ
              @[deprecated ProbabilityTheory.Kernel.setLIntegral_const]
              theorem ProbabilityTheory.Kernel.set_lintegral_const {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {f : βENNReal} {μ : MeasureTheory.Measure β} {a : α} {s : Set β} :
              ∫⁻ (x : β) in s, f x(ProbabilityTheory.Kernel.const α μ) a = ∫⁻ (x : β) in s, f xμ

              Alias of ProbabilityTheory.Kernel.setLIntegral_const.

              In a countable space with measurable singletons, every function α → MeasureTheory.Measure β defines a kernel.

              Equations
              Instances For
                noncomputable def ProbabilityTheory.Kernel.restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) :

                Kernel given by the restriction of the measures in the image of a kernel to a set.

                Equations
                • κ.restrict hs = { toFun := fun (a : α) => (κ a).restrict s, measurable' := }
                Instances For
                  theorem ProbabilityTheory.Kernel.restrict_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) :
                  (κ.restrict hs) a = (κ a).restrict s
                  theorem ProbabilityTheory.Kernel.restrict_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s t : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (ht : MeasurableSet t) :
                  ((κ.restrict hs) a) t = (κ a) (t s)
                  @[simp]
                  theorem ProbabilityTheory.Kernel.restrict_univ {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} :
                  κ.restrict = κ
                  @[simp]
                  theorem ProbabilityTheory.Kernel.lintegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) :
                  ∫⁻ (b : β), f b(κ.restrict hs) a = ∫⁻ (b : β) in s, f bκ a
                  @[simp]
                  theorem ProbabilityTheory.Kernel.setLIntegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) (t : Set β) :
                  ∫⁻ (b : β) in t, f b(κ.restrict hs) a = ∫⁻ (b : β) in t s, f bκ a
                  @[deprecated ProbabilityTheory.Kernel.setLIntegral_restrict]
                  theorem ProbabilityTheory.Kernel.set_lintegral_restrict {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set β} (κ : ProbabilityTheory.Kernel α β) (hs : MeasurableSet s) (a : α) (f : βENNReal) (t : Set β) :
                  ∫⁻ (b : β) in t, f b(κ.restrict hs) a = ∫⁻ (b : β) in t s, f bκ a

                  Alias of ProbabilityTheory.Kernel.setLIntegral_restrict.

                  noncomputable def ProbabilityTheory.Kernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) :

                  Kernel with value (κ a).comap f, for a measurable embedding f. That is, for a measurable set t : Set β, ProbabilityTheory.Kernel.comapRight κ hf a t = κ a (f '' t).

                  Equations
                  Instances For
                    theorem ProbabilityTheory.Kernel.comapRight_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (a : α) :
                    (κ.comapRight hf) a = MeasureTheory.Measure.comap f (κ a)
                    theorem ProbabilityTheory.Kernel.comapRight_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (a : α) {t : Set γ} (ht : MeasurableSet t) :
                    ((κ.comapRight hf) a) t = (κ a) (f '' t)
                    @[simp]
                    theorem ProbabilityTheory.Kernel.comapRight_id {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} (κ : ProbabilityTheory.Kernel α β) :
                    κ.comapRight = κ
                    theorem ProbabilityTheory.Kernel.IsMarkovKernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) (hf : MeasurableEmbedding f) (hκ : ∀ (a : α), (κ a) (Set.range f) = 1) :
                    instance ProbabilityTheory.Kernel.IsFiniteKernel.comapRight {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {γ : Type u_4} {mγ : MeasurableSpace γ} {f : γβ} (κ : ProbabilityTheory.Kernel α β) [ProbabilityTheory.IsFiniteKernel κ] (hf : MeasurableEmbedding f) :
                    def ProbabilityTheory.Kernel.piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {s : Set α} [DecidablePred fun (x : α) => x s] (hs : MeasurableSet s) (κ η : ProbabilityTheory.Kernel α β) :

                    ProbabilityTheory.Kernel.piecewise hs κ η is the kernel equal to κ on the measurable set s and to η on its complement.

                    Equations
                    Instances For
                      theorem ProbabilityTheory.Kernel.piecewise_apply {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) :
                      (ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then κ a else η a
                      theorem ProbabilityTheory.Kernel.piecewise_apply' {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (t : Set β) :
                      ((ProbabilityTheory.Kernel.piecewise hs κ η) a) t = if a s then (κ a) t else (η a) t
                      theorem ProbabilityTheory.Kernel.lintegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) :
                      ∫⁻ (b : β), g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β), g bκ a else ∫⁻ (b : β), g bη a
                      theorem ProbabilityTheory.Kernel.setLIntegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) (t : Set β) :
                      ∫⁻ (b : β) in t, g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β) in t, g bκ a else ∫⁻ (b : β) in t, g bη a
                      @[deprecated ProbabilityTheory.Kernel.setLIntegral_piecewise]
                      theorem ProbabilityTheory.Kernel.set_lintegral_piecewise {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ η : ProbabilityTheory.Kernel α β} {s : Set α} {hs : MeasurableSet s} [DecidablePred fun (x : α) => x s] (a : α) (g : βENNReal) (t : Set β) :
                      ∫⁻ (b : β) in t, g b(ProbabilityTheory.Kernel.piecewise hs κ η) a = if a s then ∫⁻ (b : β) in t, g bκ a else ∫⁻ (b : β) in t, g bη a

                      Alias of ProbabilityTheory.Kernel.setLIntegral_piecewise.

                      theorem ProbabilityTheory.Kernel.exists_ae_eq_isMarkovKernel {α : Type u_1} {β : Type u_2} {mα : MeasurableSpace α} {mβ : MeasurableSpace β} {κ : ProbabilityTheory.Kernel α β} {μ : MeasureTheory.Measure α} (h : ∀ᵐ (a : α) ∂μ, MeasureTheory.IsProbabilityMeasure (κ a)) (h' : μ 0) :