Documentation

Mathlib.MeasureTheory.Measure.Typeclasses.Probability

Classes for probability measures #

We introduce the following typeclasses for measures:

A measure μ is zero or a probability measure if μ univ = 0 or μ univ = 1. This class of measures appears naturally when conditioning on events, and many results which are true for probability measures hold more generally over this class.

Instances
    theorem MeasureTheory.prob_le_one {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} [IsZeroOrProbabilityMeasure μ] {s : Set α} :
    μ s 1
    theorem MeasureTheory.toReal_prob_le_one {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} [IsZeroOrProbabilityMeasure μ] {s : Set α} :
    (μ s).toReal 1
    @[simp]
    theorem MeasureTheory.one_le_prob_iff {α : Type u_1} {m0 : MeasurableSpace α} {s : Set α} {μ : Measure α} [IsZeroOrProbabilityMeasure μ] :
    1 μ s μ s = 1

    A measure μ is called a probability measure if μ univ = 1.

    Instances
      @[instance 100]
      theorem MeasureTheory.prob_add_prob_compl {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (h : MeasurableSet s) :
      μ s + μ s = 1
      theorem MeasureTheory.isProbabilityMeasure_map {α : Type u_1} {β : Type u_2} {m0 : MeasurableSpace α} [MeasurableSpace β] {μ : Measure α} [IsProbabilityMeasure μ] {f : αβ} (hf : AEMeasurable f μ) :
      theorem MeasureTheory.prob_compl_eq_one_sub₀ {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (h : NullMeasurableSet s μ) :
      μ s = 1 - μ s

      Note that this is not quite as useful as it looks because the measure takes values in ℝ≥0∞. Thus the subtraction appearing is the truncated subtraction of ℝ≥0∞, rather than the better-behaved subtraction of .

      theorem MeasureTheory.prob_compl_eq_one_sub {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
      μ s = 1 - μ s

      Note that this is not quite as useful as it looks because the measure takes values in ℝ≥0∞. Thus the subtraction appearing is the truncated subtraction of ℝ≥0∞, rather than the better-behaved subtraction of .

      @[simp]
      theorem MeasureTheory.prob_compl_eq_zero_iff₀ {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (hs : NullMeasurableSet s μ) :
      μ s = 0 μ s = 1
      @[simp]
      theorem MeasureTheory.prob_compl_eq_zero_iff {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
      μ s = 0 μ s = 1
      @[simp]
      theorem MeasureTheory.prob_compl_eq_one_iff₀ {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (hs : NullMeasurableSet s μ) :
      μ s = 1 μ s = 0
      @[simp]
      theorem MeasureTheory.prob_compl_eq_one_iff {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
      μ s = 1 μ s = 0
      theorem MeasureTheory.mem_ae_iff_prob_eq_one₀ {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (hs : NullMeasurableSet s μ) :
      s ae μ μ s = 1
      theorem MeasureTheory.mem_ae_iff_prob_eq_one {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsProbabilityMeasure μ] (hs : MeasurableSet s) :
      s ae μ μ s = 1
      theorem MeasureTheory.ae_iff_prob_eq_one {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} [IsProbabilityMeasure μ] {p : αProp} (hp : Measurable p) :
      (∀ᵐ (a : α) μ, p a) μ {a : α | p a} = 1
      theorem MeasureTheory.isProbabilityMeasure_comap {α : Type u_1} {β : Type u_2} {m0 : MeasurableSpace α} [MeasurableSpace β] {μ : Measure α} [IsProbabilityMeasure μ] {f : βα} (hf : Function.Injective f) (hf' : ∀ᵐ (a : α) μ, a Set.range f) (hf'' : ∀ (s : Set β), MeasurableSet sMeasurableSet (f '' s)) :
      theorem MeasureTheory.prob_compl_lt_one_sub_of_lt_prob {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsZeroOrProbabilityMeasure μ] {p : ENNReal} (hμs : p < μ s) (s_mble : MeasurableSet s) :
      μ s < 1 - p
      theorem MeasureTheory.prob_compl_le_one_sub_of_le_prob {α : Type u_1} {m0 : MeasurableSpace α} {μ : Measure α} {s : Set α} [IsZeroOrProbabilityMeasure μ] {p : ENNReal} (hμs : p μ s) (s_mble : MeasurableSet s) :
      μ s 1 - p