Documentation

Mathlib.CategoryTheory.Localization.Triangulated

Localization of triangulated categories #

If L : C ⥤ D is a localization functor for a class of morphisms W that is compatible with the triangulation on the category C and admits a left calculus of fractions, it is shown in this file that D can be equipped with a pretriangulated category structure, and that it is triangulated.

References #

Given W is a class of morphisms in a pretriangulated category C, this is the condition that W is compatible with the triangulation on C.

Instances

    Given a functor C ⥤ D from a pretriangulated category, this is the set of triangles in D that are in the essential image of distinguished triangles of C.

    Equations
    Instances For
      theorem CategoryTheory.Functor.essImageDistTriang_mem_of_iso {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] {T₁ T₂ : Pretriangulated.Triangle D} (e : T₂ T₁) (h : T₁ L.essImageDistTriang) :
      T₂ L.essImageDistTriang
      theorem CategoryTheory.Functor.contractible_mem_essImageDistTriang {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] [L.EssSurj] [Limits.HasZeroObject D] [Limits.HasZeroMorphisms D] [L.PreservesZeroMorphisms] (X : D) :
      theorem CategoryTheory.Functor.rotate_essImageDistTriang {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] [Preadditive D] [L.Additive] [∀ (n : ), (shiftFunctor D n).Additive] (T : Pretriangulated.Triangle D) :
      T L.essImageDistTriang T.rotate L.essImageDistTriang
      theorem CategoryTheory.Functor.complete_distinguished_essImageDistTriang_morphism {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] (H : ∀ (T₁' T₂' : Pretriangulated.Triangle C), T₁' Pretriangulated.distinguishedTrianglesT₂' Pretriangulated.distinguishedTriangles∀ (a : L.obj T₁'.obj₁ L.obj T₂'.obj₁) (b : L.obj T₁'.obj₂ L.obj T₂'.obj₂), CategoryStruct.comp (L.map T₁'.mor₁) b = CategoryStruct.comp a (L.map T₂'.mor₁)∃ (φ : L.mapTriangle.obj T₁' L.mapTriangle.obj T₂'), φ.hom₁ = a φ.hom₂ = b) (T₁ T₂ : Pretriangulated.Triangle D) (hT₁ : T₁ L.essImageDistTriang) (hT₂ : T₂ L.essImageDistTriang) (a : T₁.obj₁ T₂.obj₁) (b : T₁.obj₂ T₂.obj₂) (fac : CategoryStruct.comp T₁.mor₁ b = CategoryStruct.comp a T₂.mor₁) :
      ∃ (c : T₁.obj₃ T₂.obj₃), CategoryStruct.comp T₁.mor₂ c = CategoryStruct.comp b T₂.mor₂ CategoryStruct.comp T₁.mor₃ ((shiftFunctor D 1).map a) = CategoryStruct.comp c T₂.mor₃
      theorem CategoryTheory.Triangulated.Localization.distinguished_cocone_triangle {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] (W : MorphismProperty C) [L.IsLocalization W] [W.HasLeftCalculusOfFractions] {X Y : D} (f : X Y) :
      ∃ (Z : D) (g : Y Z) (h : Z (shiftFunctor D 1).obj X), Pretriangulated.Triangle.mk f g h L.essImageDistTriang
      theorem CategoryTheory.Triangulated.Localization.complete_distinguished_triangle_morphism {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] (W : MorphismProperty C) [L.IsLocalization W] [W.HasLeftCalculusOfFractions] [W.IsCompatibleWithTriangulation] (T₁ T₂ : Pretriangulated.Triangle D) (hT₁ : T₁ L.essImageDistTriang) (hT₂ : T₂ L.essImageDistTriang) (a : T₁.obj₁ T₂.obj₁) (b : T₁.obj₂ T₂.obj₂) (fac : CategoryStruct.comp T₁.mor₁ b = CategoryStruct.comp a T₂.mor₁) :
      ∃ (c : T₁.obj₃ T₂.obj₃), CategoryStruct.comp T₁.mor₂ c = CategoryStruct.comp b T₂.mor₂ CategoryStruct.comp T₁.mor₃ ((shiftFunctor D 1).map a) = CategoryStruct.comp c T₂.mor₃
      def CategoryTheory.Triangulated.Localization.pretriangulated {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] (W : MorphismProperty C) [L.IsLocalization W] [W.HasLeftCalculusOfFractions] [W.IsCompatibleWithTriangulation] [Limits.HasZeroObject D] [Preadditive D] [∀ (n : ), (shiftFunctor D n).Additive] [L.Additive] :

      The pretriangulated structure on the localized category.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        instance CategoryTheory.Triangulated.Localization.isTriangulated_functor {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] (W : MorphismProperty C) [L.IsLocalization W] [W.HasLeftCalculusOfFractions] [W.IsCompatibleWithTriangulation] [Limits.HasZeroObject D] [Preadditive D] [∀ (n : ), (shiftFunctor D n).Additive] [L.Additive] :
        L.IsTriangulated
        theorem CategoryTheory.Triangulated.Localization.isTriangulated {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] (W : MorphismProperty C) [L.IsLocalization W] [W.HasLeftCalculusOfFractions] [Limits.HasZeroObject D] [Preadditive D] [∀ (n : ), (shiftFunctor D n).Additive] [Pretriangulated D] [L.IsTriangulated] [IsTriangulated C] :
        instance CategoryTheory.Triangulated.Localization.instAdditiveLocalizationShiftFunctorInt {C : Type u_1} [Category.{u_3, u_1} C] [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (W : MorphismProperty C) [W.HasLeftCalculusOfFractions] [W.IsCompatibleWithTriangulation] (n : ) :
        (shiftFunctor W.Localization n).Additive
        instance CategoryTheory.Triangulated.Localization.instIsTriangulatedLocalization {C : Type u_1} [Category.{u_3, u_1} C] [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (W : MorphismProperty C) [W.HasLeftCalculusOfFractions] [W.IsCompatibleWithTriangulation] [IsTriangulated C] :
        IsTriangulated W.Localization
        instance CategoryTheory.Triangulated.Localization.instAdditiveLocalization'ShiftFunctorInt {C : Type u_1} [Category.{u_4, u_1} C] [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (W : MorphismProperty C) [W.HasLeftCalculusOfFractions] [W.IsCompatibleWithTriangulation] [W.HasLocalization] (n : ) :
        (shiftFunctor W.Localization' n).Additive
        instance CategoryTheory.Triangulated.Localization.instIsTriangulatedLocalization' {C : Type u_1} [Category.{u_3, u_1} C] [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] (W : MorphismProperty C) [W.HasLeftCalculusOfFractions] [W.IsCompatibleWithTriangulation] [W.HasLocalization] [IsTriangulated C] :
        IsTriangulated W.Localization'
        theorem CategoryTheory.Functor.distTriang_iff {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] (L : Functor C D) [HasShift C ] [Preadditive C] [Limits.HasZeroObject C] [∀ (n : ), (shiftFunctor C n).Additive] [Pretriangulated C] [HasShift D ] [L.CommShift ] [Limits.HasZeroObject D] [Preadditive D] [∀ (n : ), (shiftFunctor D n).Additive] [Pretriangulated D] [L.mapArrow.EssSurj] [L.IsTriangulated] (T : Pretriangulated.Triangle D) :