Documentation

Mathlib.CategoryTheory.Localization.Predicate

Predicate for localized categories #

In this file, a predicate L.IsLocalization W is introduced for a functor L : C ⥤ D and W : MorphismProperty C: it expresses that L identifies D with the localized category of C with respect to W (up to equivalence).

We introduce a universal property StrictUniversalPropertyFixedTarget L W E which states that L inverts the morphisms in W and that all functors C ⥤ E inverting W uniquely factors as a composition of L ⋙ G with G : D ⥤ E. Such universal properties are inputs for the constructor IsLocalization.mk' for L.IsLocalization W.

When L : C ⥤ D is a localization functor for W : MorphismProperty (i.e. when [L.IsLocalization W] holds), for any category E, there is an equivalence FunctorEquivalence L W E : (D ⥤ E) ≌ (W.FunctorsInverting E) that is induced by the composition with the functor L. When two functors F : C ⥤ E and F' : D ⥤ E correspond via this equivalence, we shall say that F' lifts F, and the associated isomorphism L ⋙ F' ≅ F is the datum that is part of the class Lifting L W F F'. The functions liftNatTrans and liftNatIso can be used to lift natural transformations and natural isomorphisms between functors.

structure CategoryTheory.Functor.IsLocalization {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) :

The predicate expressing that, up to equivalence, a functor L : C ⥤ D identifies the category D with the localized category of C with respect to W : MorphismProperty C.

Instances For
    structure CategoryTheory.Localization.StrictUniversalPropertyFixedTarget {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) (E : Type u_3) [Category E] :
    Type (max (max (max (max (max u_1 u_2) u_3) u_4) u_5) u_6)

    This universal property states that a functor L : C ⥤ D inverts morphisms in W and the all functors D ⥤ E (for a fixed category E) uniquely factors through L.

    Instances For

      The localized category W.Localization that was constructed satisfies the universal property of the localization.

      Equations
      Instances For

        When W consists of isomorphisms, the identity satisfies the universal property of the localization.

        Equations
        Instances For
          def CategoryTheory.Localization.isoOfHom {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : Quiver.Hom X Y) (hf : W f) :
          Iso (L.obj X) (L.obj Y)

          The isomorphism L.obj X ≅ L.obj Y that is deduced from a morphism f : X ⟶ Y which belongs to W, when L.IsLocalization W.

          Equations
          Instances For
            theorem CategoryTheory.Localization.isoOfHom_hom {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : Quiver.Hom X Y) (hf : W f) :
            Eq (isoOfHom L W f hf).hom (L.map f)
            theorem CategoryTheory.Localization.isoOfHom_hom_inv_id {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : Quiver.Hom X Y) (hf : W f) :
            theorem CategoryTheory.Localization.isoOfHom_hom_inv_id_assoc {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : Quiver.Hom X Y) (hf : W f) {Z : D} (h : Quiver.Hom (L.obj X) Z) :
            theorem CategoryTheory.Localization.isoOfHom_inv_hom_id {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : Quiver.Hom X Y) (hf : W f) :
            theorem CategoryTheory.Localization.isoOfHom_inv_hom_id_assoc {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : Quiver.Hom X Y) (hf : W f) {Z : D} (h : Quiver.Hom (L.obj Y) Z) :
            theorem CategoryTheory.Localization.Construction.wIso_eq_isoOfHom {C : Type u_1} [Category C] {W : MorphismProperty C} {X Y : C} (f : Quiver.Hom X Y) (hf : W f) :
            Eq (wIso f hf) (isoOfHom W.Q W f hf)
            theorem CategoryTheory.Localization.Construction.wInv_eq_isoOfHom_inv {C : Type u_1} [Category C] {W : MorphismProperty C} {X Y : C} (f : Quiver.Hom X Y) (hf : W f) :
            Eq (wInv f hf) (isoOfHom W.Q W f hf).inv

            A chosen equivalence of categories W.Localization ≅ D for a functor L : C ⥤ D which satisfies L.IsLocalization W. This shall be used in order to deduce properties of L from properties of W.Q.

            Equations
            Instances For

              Via the equivalence of categories equivalence_from_model L W : W.localization ≌ D, one may identify the functors W.Q and L.

              Equations
              Instances For

                Via the equivalence of categories equivalence_from_model L W : W.localization ≌ D, one may identify the functors L and W.Q.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The functor (D ⥤ E) ⥤ W.functors_inverting E induced by the composition with a localization functor L : C ⥤ D with respect to W : morphism_property C.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The equivalence of categories (D ⥤ E) ≌ (W.FunctorsInverting E) induced by the composition with a localization functor L : C ⥤ D with respect to W : MorphismProperty C.

                    Equations
                    Instances For

                      The functor (D ⥤ E) ⥤ (C ⥤ E) given by the composition with a localization functor L : C ⥤ D with respect to W : MorphismProperty C.

                      Equations
                      Instances For
                        theorem CategoryTheory.Localization.whiskeringLeftFunctor'_obj {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F : Functor D E) :
                        Eq ((whiskeringLeftFunctor' L W E).obj F) (L.comp F)
                        theorem CategoryTheory.Localization.full_whiskeringLeft {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] (E : Type u_4) [Category E] :
                        ((whiskeringLeft C D E).obj L).Full
                        theorem CategoryTheory.Localization.natTrans_ext {C : Type u_1} {D : Type u_2} [Category C] [Category D] {E : Type u_3} [Category E] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {F₁ F₂ : Functor D E} {τ τ' : Quiver.Hom F₁ F₂} (h : ∀ (X : C), Eq (τ.app (L.obj X)) (τ'.app (L.obj X))) :
                        Eq τ τ'
                        structure CategoryTheory.Localization.Lifting {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) {E : Type u_3} [Category E] (W : MorphismProperty C) (F : Functor C E) (F' : Functor D E) :
                        Type (max u_1 u_6)

                        When L : C ⥤ D is a localization functor for W : MorphismProperty C and F : C ⥤ E is a functor, we shall say that F' : D ⥤ E lifts F if the obvious diagram is commutative up to an isomorphism.

                        • iso' : Iso (L.comp F') F

                          the isomorphism relating the localization functor and the two other given functors

                        Instances For
                          def CategoryTheory.Localization.Lifting.iso {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] (F : Functor C E) (F' : Functor D E) [Lifting L W F F'] :
                          Iso (L.comp F') F

                          The distinguished isomorphism L ⋙ F' ≅ F given by [Lifting L W F F'].

                          Equations
                          Instances For
                            def CategoryTheory.Localization.lift {C : Type u_1} {D : Type u_2} [Category C] [Category D] {W : MorphismProperty C} {E : Type u_3} [Category E] (F : Functor C E) (hF : W.IsInvertedBy F) (L : Functor C D) [L.IsLocalization W] :

                            Given a localization functor L : C ⥤ D for W : MorphismProperty C and a functor F : C ⥤ E which inverts W, this is a choice of functor D ⥤ E which lifts F.

                            Equations
                            Instances For
                              def CategoryTheory.Localization.liftingLift {C : Type u_1} {D : Type u_2} [Category C] [Category D] {W : MorphismProperty C} {E : Type u_3} [Category E] (F : Functor C E) (hF : W.IsInvertedBy F) (L : Functor C D) [L.IsLocalization W] :
                              Lifting L W F (lift F hF L)
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                def CategoryTheory.Localization.fac {C : Type u_1} {D : Type u_2} [Category C] [Category D] {W : MorphismProperty C} {E : Type u_3} [Category E] (F : Functor C E) (hF : W.IsInvertedBy F) (L : Functor C D) [L.IsLocalization W] :
                                Iso (L.comp (lift F hF L)) F

                                The canonical isomorphism L ⋙ lift F hF L ≅ F for any functor F : C ⥤ E which inverts W, when L : C ⥤ D is a localization functor for W.

                                Equations
                                Instances For
                                  def CategoryTheory.Localization.liftNatTrans {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [Lifting L W F₁ F₁'] [Lifting L W F₂ F₂'] (τ : Quiver.Hom F₁ F₂) :
                                  Quiver.Hom F₁' F₂'

                                  Given a localization functor L : C ⥤ D for W : MorphismProperty C, if (F₁' F₂' : D ⥤ E) are functors which lifts functors (F₁ F₂ : C ⥤ E), a natural transformation τ : F₁ ⟶ F₂ uniquely lifts to a natural transformation F₁' ⟶ F₂'.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    theorem CategoryTheory.Localization.liftNatTrans_app {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [Lifting L W F₁ F₁'] [Lifting L W F₂ F₂'] (τ : Quiver.Hom F₁ F₂) (X : C) :
                                    Eq ((liftNatTrans L W F₁ F₂ F₁' F₂' τ).app (L.obj X)) (CategoryStruct.comp ((Lifting.iso L W F₁ F₁').hom.app X) (CategoryStruct.comp (τ.app X) ((Lifting.iso L W F₂ F₂').inv.app X)))
                                    theorem CategoryTheory.Localization.comp_liftNatTrans {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F₁ F₂ F₃ : Functor C E) (F₁' F₂' F₃' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] [h₃ : Lifting L W F₃ F₃'] (τ : Quiver.Hom F₁ F₂) (τ' : Quiver.Hom F₂ F₃) :
                                    Eq (CategoryStruct.comp (liftNatTrans L W F₁ F₂ F₁' F₂' τ) (liftNatTrans L W F₂ F₃ F₂' F₃' τ')) (liftNatTrans L W F₁ F₃ F₁' F₃' (CategoryStruct.comp τ τ'))
                                    theorem CategoryTheory.Localization.comp_liftNatTrans_assoc {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F₁ F₂ F₃ : Functor C E) (F₁' F₂' F₃' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] [h₃ : Lifting L W F₃ F₃'] (τ : Quiver.Hom F₁ F₂) (τ' : Quiver.Hom F₂ F₃) {Z : Functor D E} (h : Quiver.Hom F₃' Z) :
                                    Eq (CategoryStruct.comp (liftNatTrans L W F₁ F₂ F₁' F₂' τ) (CategoryStruct.comp (liftNatTrans L W F₂ F₃ F₂' F₃' τ') h)) (CategoryStruct.comp (liftNatTrans L W F₁ F₃ F₁' F₃' (CategoryStruct.comp τ τ')) h)
                                    theorem CategoryTheory.Localization.liftNatTrans_id {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F : Functor C E) (F' : Functor D E) [h : Lifting L W F F'] :
                                    def CategoryTheory.Localization.liftNatIso {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] (e : Iso F₁ F₂) :
                                    Iso F₁' F₂'

                                    Given a localization functor L : C ⥤ D for W : MorphismProperty C, if (F₁' F₂' : D ⥤ E) are functors which lifts functors (F₁ F₂ : C ⥤ E), a natural isomorphism τ : F₁ ⟶ F₂ lifts to a natural isomorphism F₁' ⟶ F₂'.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      theorem CategoryTheory.Localization.liftNatIso_inv {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] (e : Iso F₁ F₂) :
                                      Eq (liftNatIso L W F₁ F₂ F₁' F₂' e).inv (liftNatTrans L W F₂ F₁ F₂' F₁' e.inv)
                                      theorem CategoryTheory.Localization.liftNatIso_hom {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] (e : Iso F₁ F₂) :
                                      Eq (liftNatIso L W F₁ F₂ F₁' F₂' e).hom (liftNatTrans L W F₁ F₂ F₁' F₂' e.hom)
                                      def CategoryTheory.Localization.Lifting.compRight {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] {E' : Type u_4} [Category E'] (F : Functor C E) (F' : Functor D E) [Lifting L W F F'] (G : Functor E E') :
                                      Lifting L W (F.comp G) (F'.comp G)
                                      Equations
                                      Instances For
                                        theorem CategoryTheory.Localization.Lifting.compRight_iso' {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] {E' : Type u_4} [Category E'] (F : Functor C E) (F' : Functor D E) [Lifting L W F F'] (G : Functor E E') :
                                        Eq (iso' W) (isoWhiskerRight (iso L W F F') G)
                                        def CategoryTheory.Localization.Lifting.id {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) :
                                        Equations
                                        Instances For
                                          def CategoryTheory.Localization.Lifting.compLeft {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] (F : Functor D E) :
                                          Lifting L W (L.comp F) F
                                          Equations
                                          Instances For
                                            theorem CategoryTheory.Localization.Lifting.compLeft_iso' {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] (F : Functor D E) :
                                            Eq (iso' W) (Iso.refl (L.comp F))
                                            theorem CategoryTheory.Localization.Lifting.compLeft_iso {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) {E : Type u_3} [Category E] (W : MorphismProperty C) (F : Functor D E) :
                                            Eq (iso L W (L.comp F) F) (Iso.refl (L.comp F))
                                            def CategoryTheory.Localization.Lifting.ofIsos {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] {F₁ F₂ : Functor C E} {F₁' F₂' : Functor D E} (e : Iso F₁ F₂) (e' : Iso F₁' F₂') [Lifting L W F₁ F₁'] :
                                            Lifting L W F₂ F₂'

                                            Given a localization functor L : C ⥤ D for W : MorphismProperty C, if F₁' : D ⥤ E lifts a functor F₁ : C ⥤ D, then a functor F₂' which is isomorphic to F₁' also lifts a functor F₂ that is isomorphic to F₁.

                                            Equations
                                            Instances For
                                              theorem CategoryTheory.Localization.Lifting.ofIsos_iso' {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category E] {F₁ F₂ : Functor C E} {F₁' F₂' : Functor D E} (e : Iso F₁ F₂) (e' : Iso F₁' F₂') [Lifting L W F₁ F₁'] :
                                              Eq (iso' W) ((isoWhiskerLeft L e'.symm).trans ((iso L W F₁ F₁').trans e))
                                              theorem CategoryTheory.Functor.IsLocalization.of_iso {C : Type u_1} {D : Type u_2} [Category C] [Category D] (W : MorphismProperty C) {L₁ L₂ : Functor C D} (e : Iso L₁ L₂) [L₁.IsLocalization W] :
                                              theorem CategoryTheory.Functor.IsLocalization.of_equivalence_target {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_4} [Category E] (L' : Functor C E) (eq : Equivalence D E) [L.IsLocalization W] (e : Iso (L.comp eq.functor) L') :

                                              If L : C ⥤ D is a localization for W : MorphismProperty C, then it is also the case of a functor obtained by post-composing L with an equivalence of categories.

                                              def CategoryTheory.Localization.uniq {C : Type u_1} [Category C] {D₁ : Type u_5} {D₂ : Type u_6} [Category D₁] [Category D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                              Equivalence D₁ D₂

                                              If L₁ : C ⥤ D₁ and L₂ : C ⥤ D₂ are two localization functors for the same MorphismProperty C, this is an equivalence of categories D₁ ≌ D₂.

                                              Equations
                                              Instances For
                                                theorem CategoryTheory.Localization.uniq_symm {C : Type u_1} [Category C] {D₁ : Type u_4} {D₂ : Type u_5} [Category D₁] [Category D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                                Eq (uniq L₁ L₂ W').symm (uniq L₂ L₁ W')
                                                def CategoryTheory.Localization.compUniqFunctor {C : Type u_1} [Category C] {D₁ : Type u_5} {D₂ : Type u_6} [Category D₁] [Category D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                                Iso (L₁.comp (uniq L₁ L₂ W').functor) L₂

                                                The functor of equivalence of localized categories given by Localization.uniq is compatible with the localization functors.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  def CategoryTheory.Localization.compUniqInverse {C : Type u_1} [Category C] {D₁ : Type u_5} {D₂ : Type u_6} [Category D₁] [Category D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                                  Iso (L₂.comp (uniq L₁ L₂ W').inverse) L₁

                                                  The inverse functor of equivalence of localized categories given by Localization.uniq is compatible with the localization functors.

                                                  Equations
                                                  Instances For
                                                    def CategoryTheory.Localization.instLiftingFunctorUniq {C : Type u_1} [Category C] {D₁ : Type u_5} {D₂ : Type u_6} [Category D₁] [Category D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                                    Lifting L₁ W' L₂ (uniq L₁ L₂ W').functor
                                                    Equations
                                                    Instances For
                                                      def CategoryTheory.Localization.instLiftingInverseUniq {C : Type u_1} [Category C] {D₁ : Type u_5} {D₂ : Type u_6} [Category D₁] [Category D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                                      Lifting L₂ W' L₁ (uniq L₁ L₂ W').inverse
                                                      Equations
                                                      Instances For
                                                        def CategoryTheory.Localization.isoUniqFunctor {C : Type u_1} [Category C] {D₁ : Type u_5} {D₂ : Type u_6} [Category D₁] [Category D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] (F : Functor D₁ D₂) (e : Iso (L₁.comp F) L₂) :
                                                        Iso F (uniq L₁ L₂ W').functor

                                                        If L₁ : C ⥤ D₁ and L₂ : C ⥤ D₂ are two localization functors for the same MorphismProperty C, any functor F : D₁ ⥤ D₂ equipped with an isomorphism L₁ ⋙ F ≅ L₂ is isomorphic to the functor of the equivalence given by uniq.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For

                                                          The property that two morphisms become equal in the localized category.

                                                          Equations
                                                          Instances For
                                                            theorem CategoryTheory.areEqualizedByLocalization_iff {C : Type u_1} {D : Type u_2} [Category C] [Category D] (L : Functor C D) (W : MorphismProperty C) {X Y : C} (f g : Quiver.Hom X Y) [L.IsLocalization W] :
                                                            Iff (AreEqualizedByLocalization W f g) (Eq (L.map f) (L.map g))
                                                            theorem CategoryTheory.AreEqualizedByLocalization.mk {C : Type u_1} {D : Type u_2} [Category C] [Category D] (W : MorphismProperty C) {X Y : C} (f g : Quiver.Hom X Y) (L : Functor C D) [L.IsLocalization W] (h : Eq (L.map f) (L.map g)) :
                                                            theorem CategoryTheory.AreEqualizedByLocalization.map_eq {C : Type u_1} {D : Type u_2} [Category C] [Category D] {W : MorphismProperty C} {X Y : C} {f g : Quiver.Hom X Y} (h : AreEqualizedByLocalization W f g) (L : Functor C D) [L.IsLocalization W] :
                                                            Eq (L.map f) (L.map g)