Documentation

Mathlib.CategoryTheory.Localization.Predicate

Predicate for localized categories #

In this file, a predicate L.IsLocalization W is introduced for a functor L : C ⥤ D and W : MorphismProperty C: it expresses that L identifies D with the localized category of C with respect to W (up to equivalence).

We introduce a universal property StrictUniversalPropertyFixedTarget L W E which states that L inverts the morphisms in W and that all functors C ⥤ E inverting W uniquely factors as a composition of L ⋙ G with G : D ⥤ E. Such universal properties are inputs for the constructor IsLocalization.mk' for L.IsLocalization W.

When L : C ⥤ D is a localization functor for W : MorphismProperty (i.e. when [L.IsLocalization W] holds), for any category E, there is an equivalence FunctorEquivalence L W E : (D ⥤ E) ≌ (W.FunctorsInverting E) that is induced by the composition with the functor L. When two functors F : C ⥤ E and F' : D ⥤ E correspond via this equivalence, we shall say that F' lifts F, and the associated isomorphism L ⋙ F' ≅ F is the datum that is part of the class Lifting L W F F'. The functions liftNatTrans and liftNatIso can be used to lift natural transformations and natural isomorphisms between functors.

The predicate expressing that, up to equivalence, a functor L : C ⥤ D identifies the category D with the localized category of C with respect to W : MorphismProperty C.

  • inverts : W.IsInvertedBy L

    the functor inverts the given MorphismProperty

  • isEquivalence : (Localization.Construction.lift L ).IsEquivalence

    the induced functor from the constructed localized category is an equivalence

Instances
    instance CategoryTheory.Functor.q_isLocalization {C : Type u_1} [Category.{u_4, u_1} C] (W : MorphismProperty C) :
    W.Q.IsLocalization W
    structure CategoryTheory.Localization.StrictUniversalPropertyFixedTarget {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) (E : Type u_3) [Category.{u_6, u_3} E] :
    Type (max (max (max (max (max u_1 u_2) u_3) u_4) u_5) u_6)

    This universal property states that a functor L : C ⥤ D inverts morphisms in W and the all functors D ⥤ E (for a fixed category E) uniquely factors through L.

    • inverts : W.IsInvertedBy L

      the functor L inverts W

    • lift (F : Functor C E) : W.IsInvertedBy FFunctor D E

      any functor C ⥤ E which inverts W can be lifted as a functor D ⥤ E

    • fac (F : Functor C E) (hF : W.IsInvertedBy F) : L.comp (self.lift F hF) = F

      there is a factorisation involving the lifted functor

    • uniq (F₁ F₂ : Functor D E) : L.comp F₁ = L.comp F₂F₁ = F₂

      uniqueness of the lifted functor

    Instances For

      The localized category W.Localization that was constructed satisfies the universal property of the localization.

      Equations
      Instances For

        When W consists of isomorphisms, the identity satisfies the universal property of the localization.

        Equations
        Instances For
          theorem CategoryTheory.Localization.inverts {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] :
          W.IsInvertedBy L
          def CategoryTheory.Localization.isoOfHom {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : X Y) (hf : W f) :
          L.obj X L.obj Y

          The isomorphism L.obj X ≅ L.obj Y that is deduced from a morphism f : X ⟶ Y which belongs to W, when L.IsLocalization W.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Localization.isoOfHom_hom {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : X Y) (hf : W f) :
            (isoOfHom L W f hf).hom = L.map f
            @[simp]
            theorem CategoryTheory.Localization.isoOfHom_hom_inv_id {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : X Y) (hf : W f) :
            CategoryStruct.comp (L.map f) (isoOfHom L W f hf).inv = CategoryStruct.id (L.obj X)
            @[simp]
            theorem CategoryTheory.Localization.isoOfHom_hom_inv_id_assoc {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : X Y) (hf : W f) {Z : D} (h : L.obj X Z) :
            CategoryStruct.comp (L.map f) (CategoryStruct.comp (isoOfHom L W f hf).inv h) = h
            @[simp]
            theorem CategoryTheory.Localization.isoOfHom_inv_hom_id {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : X Y) (hf : W f) :
            CategoryStruct.comp (isoOfHom L W f hf).inv (L.map f) = CategoryStruct.id (L.obj Y)
            @[simp]
            theorem CategoryTheory.Localization.isoOfHom_inv_hom_id_assoc {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {X Y : C} (f : X Y) (hf : W f) {Z : D} (h : L.obj Y Z) :
            CategoryStruct.comp (isoOfHom L W f hf).inv (CategoryStruct.comp (L.map f) h) = h
            @[simp]
            theorem CategoryTheory.Localization.isoOfHom_id_inv {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] (X : C) (hX : W (CategoryStruct.id X)) :
            (isoOfHom L W (CategoryStruct.id X) hX).inv = CategoryStruct.id (L.obj X)
            theorem CategoryTheory.Localization.Construction.wIso_eq_isoOfHom {C : Type u_1} [Category.{u_4, u_1} C] {W : MorphismProperty C} {X Y : C} (f : X Y) (hf : W f) :
            wIso f hf = isoOfHom W.Q W f hf
            theorem CategoryTheory.Localization.Construction.wInv_eq_isoOfHom_inv {C : Type u_1} [Category.{u_4, u_1} C] {W : MorphismProperty C} {X Y : C} (f : X Y) (hf : W f) :
            wInv f hf = (isoOfHom W.Q W f hf).inv
            instance CategoryTheory.Localization.instIsEquivalenceLocalizationLift {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) {W : MorphismProperty C} [L.IsLocalization W] :
            (Construction.lift L ).IsEquivalence
            def CategoryTheory.Localization.equivalenceFromModel {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] :
            W.Localization D

            A chosen equivalence of categories W.Localization ≅ D for a functor L : C ⥤ D which satisfies L.IsLocalization W. This shall be used in order to deduce properties of L from properties of W.Q.

            Equations
            Instances For
              def CategoryTheory.Localization.qCompEquivalenceFromModelFunctorIso {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] :
              W.Q.comp (equivalenceFromModel L W).functor L

              Via the equivalence of categories equivalence_from_model L W : W.localization ≌ D, one may identify the functors W.Q and L.

              Equations
              Instances For
                def CategoryTheory.Localization.compEquivalenceFromModelInverseIso {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] :
                L.comp (equivalenceFromModel L W).inverse W.Q

                Via the equivalence of categories equivalence_from_model L W : W.localization ≌ D, one may identify the functors L and W.Q.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  theorem CategoryTheory.Localization.essSurj {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] :
                  L.EssSurj
                  def CategoryTheory.Localization.whiskeringLeftFunctor {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) (E : Type u_3) [Category.{u_6, u_3} E] [L.IsLocalization W] :
                  Functor (Functor D E) (W.FunctorsInverting E)

                  The functor (D ⥤ E) ⥤ W.functors_inverting E induced by the composition with a localization functor L : C ⥤ D with respect to W : morphism_property C.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    def CategoryTheory.Localization.functorEquivalence {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) (E : Type u_3) [Category.{u_6, u_3} E] [L.IsLocalization W] :
                    Functor D E W.FunctorsInverting E

                    The equivalence of categories (D ⥤ E) ≌ (W.FunctorsInverting E) induced by the composition with a localization functor L : C ⥤ D with respect to W : MorphismProperty C.

                    Equations
                    Instances For
                      def CategoryTheory.Localization.whiskeringLeftFunctor' {C : Type u_1} {D : Type u_2} [Category.{u_5, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] (E : Type u_4) [Category.{u_7, u_4} E] :
                      Functor (Functor D E) (Functor C E)

                      The functor (D ⥤ E) ⥤ (C ⥤ E) given by the composition with a localization functor L : C ⥤ D with respect to W : MorphismProperty C.

                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Localization.whiskeringLeftFunctor'_obj {C : Type u_1} {D : Type u_2} [Category.{u_6, u_1} C] [Category.{u_4, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_5, u_3} E] [L.IsLocalization W] (F : Functor D E) :
                        (whiskeringLeftFunctor' L W E).obj F = L.comp F
                        theorem CategoryTheory.Localization.full_whiskeringLeft {C : Type u_1} {D : Type u_2} [Category.{u_5, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] (E : Type u_4) [Category.{u_7, u_4} E] :
                        ((whiskeringLeft C D E).obj L).Full
                        theorem CategoryTheory.Localization.faithful_whiskeringLeft {C : Type u_1} {D : Type u_2} [Category.{u_5, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] (E : Type u_4) [Category.{u_7, u_4} E] :
                        ((whiskeringLeft C D E).obj L).Faithful
                        theorem CategoryTheory.Localization.natTrans_ext {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] {E : Type u_3} [Category.{u_6, u_3} E] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {F₁ F₂ : Functor D E} {τ τ' : F₁ F₂} (h : ∀ (X : C), τ.app (L.obj X) = τ'.app (L.obj X)) :
                        τ = τ'
                        class CategoryTheory.Localization.Lifting {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) {E : Type u_3} [Category.{u_6, u_3} E] (W : MorphismProperty C) (F : Functor C E) (F' : Functor D E) :
                        Type (max u_1 u_6)

                        When L : C ⥤ D is a localization functor for W : MorphismProperty C and F : C ⥤ E is a functor, we shall say that F' : D ⥤ E lifts F if the obvious diagram is commutative up to an isomorphism.

                        • iso' : L.comp F' F

                          the isomorphism relating the localization functor and the two other given functors

                        Instances
                          def CategoryTheory.Localization.Lifting.iso {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_6, u_3} E] (F : Functor C E) (F' : Functor D E) [Lifting L W F F'] :
                          L.comp F' F

                          The distinguished isomorphism L ⋙ F' ≅ F given by [Lifting L W F F'].

                          Equations
                          Instances For
                            def CategoryTheory.Localization.lift {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] {W : MorphismProperty C} {E : Type u_3} [Category.{u_6, u_3} E] (F : Functor C E) (hF : W.IsInvertedBy F) (L : Functor C D) [L.IsLocalization W] :

                            Given a localization functor L : C ⥤ D for W : MorphismProperty C and a functor F : C ⥤ E which inverts W, this is a choice of functor D ⥤ E which lifts F.

                            Equations
                            Instances For
                              instance CategoryTheory.Localization.liftingLift {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] {W : MorphismProperty C} {E : Type u_3} [Category.{u_6, u_3} E] (F : Functor C E) (hF : W.IsInvertedBy F) (L : Functor C D) [L.IsLocalization W] :
                              Lifting L W F (lift F hF L)
                              Equations
                              • One or more equations did not get rendered due to their size.
                              def CategoryTheory.Localization.fac {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] {W : MorphismProperty C} {E : Type u_3} [Category.{u_6, u_3} E] (F : Functor C E) (hF : W.IsInvertedBy F) (L : Functor C D) [L.IsLocalization W] :
                              L.comp (lift F hF L) F

                              The canonical isomorphism L ⋙ lift F hF L ≅ F for any functor F : C ⥤ E which inverts W, when L : C ⥤ D is a localization functor for W.

                              Equations
                              Instances For
                                def CategoryTheory.Localization.liftNatTrans {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_6, u_3} E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [Lifting L W F₁ F₁'] [Lifting L W F₂ F₂'] (τ : F₁ F₂) :
                                F₁' F₂'

                                Given a localization functor L : C ⥤ D for W : MorphismProperty C, if (F₁' F₂' : D ⥤ E) are functors which lifts functors (F₁ F₂ : C ⥤ E), a natural transformation τ : F₁ ⟶ F₂ uniquely lifts to a natural transformation F₁' ⟶ F₂'.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.Localization.liftNatTrans_app {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_5, u_3} E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [Lifting L W F₁ F₁'] [Lifting L W F₂ F₂'] (τ : F₁ F₂) (X : C) :
                                  (liftNatTrans L W F₁ F₂ F₁' F₂' τ).app (L.obj X) = CategoryStruct.comp ((Lifting.iso L W F₁ F₁').hom.app X) (CategoryStruct.comp (τ.app X) ((Lifting.iso L W F₂ F₂').inv.app X))
                                  @[simp]
                                  theorem CategoryTheory.Localization.comp_liftNatTrans {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_5, u_3} E] [L.IsLocalization W] (F₁ F₂ F₃ : Functor C E) (F₁' F₂' F₃' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] [h₃ : Lifting L W F₃ F₃'] (τ : F₁ F₂) (τ' : F₂ F₃) :
                                  CategoryStruct.comp (liftNatTrans L W F₁ F₂ F₁' F₂' τ) (liftNatTrans L W F₂ F₃ F₂' F₃' τ') = liftNatTrans L W F₁ F₃ F₁' F₃' (CategoryStruct.comp τ τ')
                                  @[simp]
                                  theorem CategoryTheory.Localization.comp_liftNatTrans_assoc {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_5, u_3} E] [L.IsLocalization W] (F₁ F₂ F₃ : Functor C E) (F₁' F₂' F₃' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] [h₃ : Lifting L W F₃ F₃'] (τ : F₁ F₂) (τ' : F₂ F₃) {Z : Functor D E} (h : F₃' Z) :
                                  CategoryStruct.comp (liftNatTrans L W F₁ F₂ F₁' F₂' τ) (CategoryStruct.comp (liftNatTrans L W F₂ F₃ F₂' F₃' τ') h) = CategoryStruct.comp (liftNatTrans L W F₁ F₃ F₁' F₃' (CategoryStruct.comp τ τ')) h
                                  @[simp]
                                  theorem CategoryTheory.Localization.liftNatTrans_id {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_5, u_3} E] [L.IsLocalization W] (F : Functor C E) (F' : Functor D E) [h : Lifting L W F F'] :
                                  def CategoryTheory.Localization.liftNatIso {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_6, u_3} E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] (e : F₁ F₂) :
                                  F₁' F₂'

                                  Given a localization functor L : C ⥤ D for W : MorphismProperty C, if (F₁' F₂' : D ⥤ E) are functors which lifts functors (F₁ F₂ : C ⥤ E), a natural isomorphism τ : F₁ ⟶ F₂ lifts to a natural isomorphism F₁' ⟶ F₂'.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.Localization.liftNatIso_inv {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_6, u_3} E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] (e : F₁ F₂) :
                                    (liftNatIso L W F₁ F₂ F₁' F₂' e).inv = liftNatTrans L W F₂ F₁ F₂' F₁' e.inv
                                    @[simp]
                                    theorem CategoryTheory.Localization.liftNatIso_hom {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_6, u_3} E] [L.IsLocalization W] (F₁ F₂ : Functor C E) (F₁' F₂' : Functor D E) [h₁ : Lifting L W F₁ F₁'] [h₂ : Lifting L W F₂ F₂'] (e : F₁ F₂) :
                                    (liftNatIso L W F₁ F₂ F₁' F₂' e).hom = liftNatTrans L W F₁ F₂ F₁' F₂' e.hom
                                    instance CategoryTheory.Localization.Lifting.compRight {C : Type u_1} {D : Type u_2} [Category.{u_5, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_7, u_3} E] {E' : Type u_4} [Category.{u_8, u_4} E'] (F : Functor C E) (F' : Functor D E) [Lifting L W F F'] (G : Functor E E') :
                                    Lifting L W (F.comp G) (F'.comp G)
                                    Equations
                                    @[simp]
                                    theorem CategoryTheory.Localization.Lifting.compRight_iso' {C : Type u_1} {D : Type u_2} [Category.{u_5, u_1} C] [Category.{u_6, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_7, u_3} E] {E' : Type u_4} [Category.{u_8, u_4} E'] (F : Functor C E) (F' : Functor D E) [Lifting L W F F'] (G : Functor E E') :
                                    iso' W = isoWhiskerRight (iso L W F F') G
                                    Equations
                                    @[simp]
                                    theorem CategoryTheory.Localization.Lifting.id_iso' {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) :
                                    iso' W = L.rightUnitor
                                    @[simp]
                                    @[simp]
                                    theorem CategoryTheory.Localization.Lifting.compLeft_iso {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) {E : Type u_3} [Category.{u_6, u_3} E] (W : MorphismProperty C) (F : Functor D E) :
                                    iso L W (L.comp F) F = Iso.refl (L.comp F)
                                    def CategoryTheory.Localization.Lifting.ofIsos {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_6, u_3} E] {F₁ F₂ : Functor C E} {F₁' F₂' : Functor D E} (e : F₁ F₂) (e' : F₁' F₂') [Lifting L W F₁ F₁'] :
                                    Lifting L W F₂ F₂'

                                    Given a localization functor L : C ⥤ D for W : MorphismProperty C, if F₁' : D ⥤ E lifts a functor F₁ : C ⥤ D, then a functor F₂' which is isomorphic to F₁' also lifts a functor F₂ that is isomorphic to F₁.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.Localization.Lifting.ofIsos_iso' {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_3} [Category.{u_6, u_3} E] {F₁ F₂ : Functor C E} {F₁' F₂' : Functor D E} (e : F₁ F₂) (e' : F₁' F₂') [Lifting L W F₁ F₁'] :
                                      iso' W = isoWhiskerLeft L e'.symm ≪≫ iso L W F₁ F₁' ≪≫ e
                                      theorem CategoryTheory.Functor.IsLocalization.of_iso {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (W : MorphismProperty C) {L₁ L₂ : Functor C D} (e : L₁ L₂) [L₁.IsLocalization W] :
                                      L₂.IsLocalization W
                                      theorem CategoryTheory.Functor.IsLocalization.of_equivalence_target {C : Type u_1} {D : Type u_2} [Category.{u_6, u_1} C] [Category.{u_7, u_2} D] (L : Functor C D) (W : MorphismProperty C) {E : Type u_4} [Category.{u_5, u_4} E] (L' : Functor C E) (eq : D E) [L.IsLocalization W] (e : L.comp eq.functor L') :
                                      L'.IsLocalization W

                                      If L : C ⥤ D is a localization for W : MorphismProperty C, then it is also the case of a functor obtained by post-composing L with an equivalence of categories.

                                      instance CategoryTheory.Functor.IsLocalization.instCompOfIsEquivalence {C : Type u_1} {D : Type u_2} [Category.{u_6, u_1} C] [Category.{u_4, u_2} D] (L : Functor C D) (W : MorphismProperty C) (E : Type u_3) [Category.{u_5, u_3} E] (F : Functor D E) [F.IsEquivalence] [L.IsLocalization W] :
                                      (L.comp F).IsLocalization W
                                      theorem CategoryTheory.Functor.IsLocalization.of_isEquivalence {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) (hW : W MorphismProperty.isomorphisms C) [L.IsEquivalence] :
                                      L.IsLocalization W
                                      def CategoryTheory.Localization.uniq {C : Type u_1} [Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [Category.{u_7, u_5} D₁] [Category.{u_8, u_6} D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                      D₁ D₂

                                      If L₁ : C ⥤ D₁ and L₂ : C ⥤ D₂ are two localization functors for the same MorphismProperty C, this is an equivalence of categories D₁ ≌ D₂.

                                      Equations
                                      Instances For
                                        theorem CategoryTheory.Localization.uniq_symm {C : Type u_1} [Category.{u_8, u_1} C] {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_6, u_4} D₁] [Category.{u_7, u_5} D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                        (uniq L₁ L₂ W').symm = uniq L₂ L₁ W'
                                        def CategoryTheory.Localization.compUniqFunctor {C : Type u_1} [Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [Category.{u_7, u_5} D₁] [Category.{u_8, u_6} D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                        L₁.comp (uniq L₁ L₂ W').functor L₂

                                        The functor of equivalence of localized categories given by Localization.uniq is compatible with the localization functors.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          def CategoryTheory.Localization.compUniqInverse {C : Type u_1} [Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [Category.{u_7, u_5} D₁] [Category.{u_8, u_6} D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                          L₂.comp (uniq L₁ L₂ W').inverse L₁

                                          The inverse functor of equivalence of localized categories given by Localization.uniq is compatible with the localization functors.

                                          Equations
                                          Instances For
                                            instance CategoryTheory.Localization.instLiftingFunctorUniq {C : Type u_1} [Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [Category.{u_7, u_5} D₁] [Category.{u_8, u_6} D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                            Lifting L₁ W' L₂ (uniq L₁ L₂ W').functor
                                            Equations
                                            instance CategoryTheory.Localization.instLiftingInverseUniq {C : Type u_1} [Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [Category.{u_7, u_5} D₁] [Category.{u_8, u_6} D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] :
                                            Lifting L₂ W' L₁ (uniq L₁ L₂ W').inverse
                                            Equations
                                            def CategoryTheory.Localization.isoUniqFunctor {C : Type u_1} [Category.{u_4, u_1} C] {D₁ : Type u_5} {D₂ : Type u_6} [Category.{u_7, u_5} D₁] [Category.{u_8, u_6} D₂] (L₁ : Functor C D₁) (L₂ : Functor C D₂) (W' : MorphismProperty C) [L₁.IsLocalization W'] [L₂.IsLocalization W'] (F : Functor D₁ D₂) (e : L₁.comp F L₂) :
                                            F (uniq L₁ L₂ W').functor

                                            If L₁ : C ⥤ D₁ and L₂ : C ⥤ D₂ are two localization functors for the same MorphismProperty C, any functor F : D₁ ⥤ D₂ equipped with an isomorphism L₁ ⋙ F ≅ L₂ is isomorphic to the functor of the equivalence given by uniq.

                                            Equations
                                            Instances For

                                              The property that two morphisms become equal in the localized category.

                                              Equations
                                              Instances For
                                                theorem CategoryTheory.areEqualizedByLocalization_iff {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (L : Functor C D) (W : MorphismProperty C) {X Y : C} (f g : X Y) [L.IsLocalization W] :
                                                AreEqualizedByLocalization W f g L.map f = L.map g
                                                theorem CategoryTheory.AreEqualizedByLocalization.mk {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] (W : MorphismProperty C) {X Y : C} (f g : X Y) (L : Functor C D) [L.IsLocalization W] (h : L.map f = L.map g) :
                                                theorem CategoryTheory.AreEqualizedByLocalization.map_eq {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] {W : MorphismProperty C} {X Y : C} {f g : X Y} (h : AreEqualizedByLocalization W f g) (L : Functor C D) [L.IsLocalization W] :
                                                L.map f = L.map g