Documentation

Mathlib.CategoryTheory.Shift.Localization

The shift induced on a localized category #

Let C be a category equipped with a shift by a monoid A. A morphism property W on C satisfies W.IsCompatibleWithShift A when for all a : A, a morphism f is in W iff f⟦a⟧' is. When this compatibility is satisfied, then the corresponding localized category can be equipped with a shift by A, and the localization functor is compatible with the shift.

A morphism property W on a category C is compatible with the shift by a monoid A when for all a : A, a morphism f belongs to W if and only if f⟦a⟧' does.

  • condition (a : A) : W.inverseImage (shiftFunctor C a) = W

    the condition that for all a : A, the morphism property W is not changed when we take its inverse image by the shift functor by a

Instances
    theorem CategoryTheory.MorphismProperty.shift {C : Type u₁} [Category.{v₁, u₁} C] (W : MorphismProperty C) {A : Type w} [AddMonoid A] [HasShift C A] [W.IsCompatibleWithShift A] {X Y : C} {f : X Y} (hf : W f) (a : A) :
    W ((shiftFunctor C a).map f)
    @[reducible, inline]

    The morphism of localizer from W to W given by the functor shiftFunctor C a when a : A and W is compatible with the shift by A.

    Equations
    Instances For
      @[irreducible]

      When L : C ⥤ D is a localization functor with respect to a morphism property W that is compatible with the shift by a monoid A on C, this is the induced shift on the category D.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[irreducible]

        The localization functor L : C ⥤ D is compatible with the shift.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[irreducible]

          The localized category W.Localization is endowed with the induced shift.

          Equations
          @[irreducible]

          The localization functor W.Q : C ⥤ W.Localization is compatible with the shift.

          Equations
          @[irreducible]

          The localized category W.Localization' is endowed with the induced shift.

          Equations
          @[irreducible]

          The localization functor W.Q' : C ⥤ W.Localization' is compatible with the shift.

          Equations
          noncomputable def CategoryTheory.Functor.commShiftOfLocalization.iso {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {A : Type w} [AddMonoid A] [HasShift C A] (F : Functor C E) (F' : Functor D E) [Localization.Lifting L W F F'] [HasShift D A] [HasShift E A] [L.CommShift A] [F.CommShift A] (a : A) :

          Auxiliary definition for Functor.commShiftOfLocalization.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Functor.commShiftOfLocalization.iso_hom_app {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {A : Type w} [AddMonoid A] [HasShift C A] (F : Functor C E) (F' : Functor D E) [Localization.Lifting L W F F'] [HasShift D A] [HasShift E A] [L.CommShift A] [F.CommShift A] (a : A) (X : C) :
            @[simp]
            theorem CategoryTheory.Functor.commShiftOfLocalization.iso_inv_app {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] {A : Type w} [AddMonoid A] [HasShift C A] (F : Functor C E) (F' : Functor D E) [Localization.Lifting L W F F'] [HasShift D A] [HasShift E A] [L.CommShift A] [F.CommShift A] (a : A) (X : C) :
            noncomputable def CategoryTheory.Functor.commShiftOfLocalization {C : Type u₁} {D : Type u₂} [Category.{v₁, u₁} C] [Category.{v₂, u₂} D] {E : Type u₃} [Category.{v₃, u₃} E] (L : Functor C D) (W : MorphismProperty C) [L.IsLocalization W] (A : Type w) [AddMonoid A] [HasShift C A] (F : Functor C E) (F' : Functor D E) [Localization.Lifting L W F F'] [HasShift D A] [HasShift E A] [L.CommShift A] [F.CommShift A] :

            In the context of localization of categories, if a functor is induced by a functor which commutes with the shift, then this functor commutes with the shift.

            Equations
            Instances For
              noncomputable def CategoryTheory.LocalizerMorphism.commShift {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_6, u_1} C₁] [Category.{u_7, u_2} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) (M : Type u_3) [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_4} D₁] [Category.{u_9, u_5} D₂] (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : Functor C₂ D₂) [HasShift D₁ M] [HasShift D₂ M] [L₁.CommShift M] [L₂.CommShift M] (G : Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) :

              This is the commutation of a functor G to shifts by an additive monoid M when e : Φ.functor ⋙ L₂ ≅ L₁ ⋙ G is an isomorphism, Φ is a localizer morphism and L₁ is a localization functor. We assume that all categories involved are equipped with shifts and that L₁, L₂ and Φ.functor commute to them.

              Equations
              Instances For
                theorem CategoryTheory.LocalizerMorphism.commShift_iso_hom_app {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type u_3} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_7, u_4} D₁] [Category.{u_6, u_5} D₂] (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : Functor C₂ D₂) [HasShift D₁ M] [HasShift D₂ M] [L₁.CommShift M] [L₂.CommShift M] (G : Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) (m : M) (X : C₁) :
                theorem CategoryTheory.LocalizerMorphism.commShift_iso_hom_app_assoc {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type u_3} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_7, u_4} D₁] [Category.{u_6, u_5} D₂] (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : Functor C₂ D₂) [HasShift D₁ M] [HasShift D₂ M] [L₁.CommShift M] [L₂.CommShift M] (G : Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) (m : M) (X : C₁) {Z : D₂} (h : (shiftFunctor D₂ m).obj (G.obj (L₁.obj X)) Z) :
                theorem CategoryTheory.LocalizerMorphism.commShift_iso_inv_app {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type u_3} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_7, u_4} D₁] [Category.{u_6, u_5} D₂] (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : Functor C₂ D₂) [HasShift D₁ M] [HasShift D₂ M] [L₁.CommShift M] [L₂.CommShift M] (G : Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) (m : M) (X : C₁) :
                theorem CategoryTheory.LocalizerMorphism.commShift_iso_inv_app_assoc {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_8, u_1} C₁] [Category.{u_9, u_2} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type u_3} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_7, u_4} D₁] [Category.{u_6, u_5} D₂] (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : Functor C₂ D₂) [HasShift D₁ M] [HasShift D₂ M] [L₁.CommShift M] [L₂.CommShift M] (G : Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) (m : M) (X : C₁) {Z : D₂} (h : G.obj ((shiftFunctor D₁ m).obj (L₁.obj X)) Z) :
                theorem CategoryTheory.LocalizerMorphism.natTransCommShift_hom {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_6, u_1} C₁] [Category.{u_8, u_2} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type u_3} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_9, u_4} D₁] [Category.{u_7, u_5} D₂] (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : Functor C₂ D₂) [HasShift D₁ M] [HasShift D₂ M] [L₁.CommShift M] [L₂.CommShift M] (G : Functor D₁ D₂) (e : Φ.functor.comp L₂ L₁.comp G) :
                noncomputable instance CategoryTheory.LocalizerMorphism.instCommShiftLocalizedFunctor {C₁ : Type u_1} {C₂ : Type u_2} [Category.{u_6, u_1} C₁] [Category.{u_7, u_2} C₂] {W₁ : MorphismProperty C₁} {W₂ : MorphismProperty C₂} (Φ : LocalizerMorphism W₁ W₂) {M : Type u_3} [AddMonoid M] [HasShift C₁ M] [HasShift C₂ M] [Φ.functor.CommShift M] {D₁ : Type u_4} {D₂ : Type u_5} [Category.{u_8, u_4} D₁] [Category.{u_9, u_5} D₂] (L₁ : Functor C₁ D₁) [L₁.IsLocalization W₁] (L₂ : Functor C₂ D₂) [HasShift D₁ M] [HasShift D₂ M] [L₁.CommShift M] [L₂.CommShift M] [L₂.IsLocalization W₂] :
                (Φ.localizedFunctor L₁ L₂).CommShift M
                Equations