t-structures on triangulated categories #
This files introduces the notion of t-structure on (pre)triangulated categories.
The first example of t-structure shall be the canonical t-structure on the derived category of an abelian category (TODO).
Given a t-structure t : TStructure C
, we define type classes t.IsLE X n
and t.IsGE X n
in order to say that an object X : C
is ≤ n
or ≥ n
for t
.
Implementation notes #
We introduce the type of t-structures rather than a type class saying that we have fixed a t-structure on a certain category. The reason is that certain triangulated categories have several t-structures which one may want to use depending on the context.
TODO #
- define functors
t.truncLE n : C ⥤ C
,t.truncGE n : C ⥤ C
and the associated distinguished triangles - promote these truncations to a (functorial) spectral object
- define the heart of
t
and show it is an abelian category - define triangulated subcategories
t.plus
,t.minus
,t.bounded
and show that there are induced t-structures on these full subcategories
References #
TStructure C
is the type of t-structures on the (pre)triangulated category C
.
the predicate of objects that are
≤ n
forn : ℤ
.the predicate of objects that are
≥ n
forn : ℤ
.- LE_closedUnderIsomorphisms : ∀ (n : ℤ), CategoryTheory.ClosedUnderIsomorphisms (self.LE n)
- GE_closedUnderIsomorphisms : ∀ (n : ℤ), CategoryTheory.ClosedUnderIsomorphisms (self.GE n)
- LE_shift : ∀ (n a n' : ℤ), a + n' = n → ∀ (X : C), self.LE n X → self.LE n' ((CategoryTheory.shiftFunctor C a).obj X)
- GE_shift : ∀ (n a n' : ℤ), a + n' = n → ∀ (X : C), self.GE n X → self.GE n' ((CategoryTheory.shiftFunctor C a).obj X)
- LE_zero_le : self.LE 0 ≤ self.LE 1
- GE_one_le : self.GE 1 ≤ self.GE 0
- exists_triangle_zero_one : ∀ (A : C), ∃ (X : C) (Y : C) (_ : self.LE 0 X) (_ : self.GE 1 Y) (f : X ⟶ A) (g : A ⟶ Y) (h : Y ⟶ (CategoryTheory.shiftFunctor C 1).obj X), CategoryTheory.Pretriangulated.Triangle.mk f g h ∈ CategoryTheory.Pretriangulated.distinguishedTriangles
Instances For
Given a t-structure t
on a pretriangulated category C
, the property t.IsLE X n
holds if X : C
is ≤ n
for the t-structure.
- le : t.LE n X
Instances
Given a t-structure t
on a pretriangulated category C
, the property t.IsGE X n
holds if X : C
is ≥ n
for the t-structure.
- ge : t.GE n X