Documentation

Mathlib.MeasureTheory.Function.StronglyMeasurable.Lp

Finitely strongly measurable functions in Lp #

Functions in Lp for 0 < p < ∞ are finitely strongly measurable.

Main statements #

References #

theorem MeasureTheory.Memℒp.finStronglyMeasurable_of_stronglyMeasurable {α : Type u_1} {G : Type u_2} {p : ENNReal} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] {f : αG} (hf : Memℒp f p μ) (hf_meas : StronglyMeasurable f) (hp_ne_zero : p 0) (hp_ne_top : p ) :
theorem MeasureTheory.Memℒp.aefinStronglyMeasurable {α : Type u_1} {G : Type u_2} {p : ENNReal} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] {f : αG} (hf : Memℒp f p μ) (hp_ne_zero : p 0) (hp_ne_top : p ) :
theorem MeasureTheory.Integrable.aefinStronglyMeasurable {α : Type u_1} {G : Type u_2} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] {f : αG} (hf : Integrable f μ) :
theorem MeasureTheory.Lp.finStronglyMeasurable {α : Type u_1} {G : Type u_2} {p : ENNReal} {m0 : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup G] (f : (Lp G p μ)) (hp_ne_zero : p 0) (hp_ne_top : p ) :