Documentation

Mathlib.CategoryTheory.Limits.VanKampen

Universal colimits and van Kampen colimits #

Main definitions #

References #

def CategoryTheory.NatTrans.Equifibered {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {F G : Functor J C} (α : F G) :

A natural transformation is equifibered if every commutative square of the following form is a pullback.

F(X) → F(Y)
 ↓      ↓
G(X) → G(Y)
Equations
Instances For
    theorem CategoryTheory.NatTrans.Equifibered.comp {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {F G H : Functor J C} {α : F G} {β : G H} (hα : Equifibered α) (hβ : Equifibered β) :
    theorem CategoryTheory.NatTrans.Equifibered.whiskerRight {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {D : Type u_2} [Category.{u_3, u_2} D] {F G : Functor J C} {α : F G} (hα : Equifibered α) (H : Functor C D) [∀ (i j : J) (f : j i), Limits.PreservesLimit (Limits.cospan (α.app i) (G.map f)) H] :

    A (colimit) cocone over a diagram F : J ⥤ C is universal if it is stable under pullbacks.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      A (colimit) cocone over a diagram F : J ⥤ C is van Kampen if for every cocone c' over the pullback of the diagram F' : J ⥤ C', c' is colimiting iff c' is the pullback of c.

      TODO: Show that this is iff the functor C ⥤ Catᵒᵖ sending x to C/x preserves it. TODO: Show that this is iff the inclusion functor C ⥤ Span(C) preserves it.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        A universal colimit is a colimit.

        Equations
        • h.isColimit = .some
        Instances For

          A van Kampen colimit is a colimit.

          Equations
          • h.isColimit = .isColimit
          Instances For
            theorem CategoryTheory.IsVanKampenColimit.of_mapCocone {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {D : Type u_2} [Category.{u_3, u_2} D] (G : Functor C D) {F : Functor J C} {c : Limits.Cocone F} [∀ (i j : J) (X : C) (f : X F.obj j) (g : i j), Limits.PreservesLimit (Limits.cospan f (F.map g)) G] [∀ (i : J) (X : C) (f : X c.pt), Limits.PreservesLimit (Limits.cospan f (c.app i)) G] [Limits.ReflectsLimitsOfShape Limits.WalkingCospan G] [Limits.PreservesColimitsOfShape J G] [Limits.ReflectsColimitsOfShape J G] (H : IsVanKampenColimit (G.mapCocone c)) :
            theorem CategoryTheory.IsVanKampenColimit.mapCocone_iff {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {D : Type u_2} [Category.{u_3, u_2} D] (G : Functor C D) {F : Functor J C} {c : Limits.Cocone F} [G.IsEquivalence] :
            theorem CategoryTheory.IsUniversalColimit.map_reflective {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {D : Type u_2} [Category.{u_3, u_2} D] {Gl : Functor C D} {Gr : Functor D C} (adj : Gl Gr) [Gr.Full] [Gr.Faithful] {F : Functor J D} {c : Limits.Cocone (F.comp Gr)} (H : IsUniversalColimit c) [∀ (X : D) (f : X Gl.obj c.pt), Limits.HasPullback (Gr.map f) (adj.unit.app c.pt)] [∀ (X : D) (f : X Gl.obj c.pt), Limits.PreservesLimit (Limits.cospan (Gr.map f) (adj.unit.app c.pt)) Gl] :
            IsUniversalColimit (Gl.mapCocone c)
            theorem CategoryTheory.IsVanKampenColimit.map_reflective {J : Type v'} [Category.{u', v'} J] {C : Type u} [Category.{v, u} C] {D : Type u_2} [Category.{u_3, u_2} D] [Limits.HasColimitsOfShape J C] {Gl : Functor C D} {Gr : Functor D C} (adj : Gl Gr) [Gr.Full] [Gr.Faithful] {F : Functor J D} {c : Limits.Cocone (F.comp Gr)} (H : IsVanKampenColimit c) [∀ (X : D) (f : X Gl.obj c.pt), Limits.HasPullback (Gr.map f) (adj.unit.app c.pt)] [∀ (X : D) (f : X Gl.obj c.pt), Limits.PreservesLimit (Limits.cospan (Gr.map f) (adj.unit.app c.pt)) Gl] [∀ (X : C) (i : J) (f : X c.pt), Limits.PreservesLimit (Limits.cospan f (c.app i)) Gl] :
            IsVanKampenColimit (Gl.mapCocone c)
            theorem CategoryTheory.BinaryCofan.isVanKampen_iff {C : Type u} [Category.{v, u} C] {X Y : C} (c : Limits.BinaryCofan X Y) :
            IsVanKampenColimit c ∀ {X' Y' : C} (c' : Limits.BinaryCofan X' Y') (αX : X' X) (αY : Y' Y) (f : c'.pt c.pt), CategoryStruct.comp αX c.inl = CategoryStruct.comp c'.inl fCategoryStruct.comp αY c.inr = CategoryStruct.comp c'.inr f(Nonempty (Limits.IsColimit c') IsPullback c'.inl αX f c.inl IsPullback c'.inr αY f c.inr)
            theorem CategoryTheory.BinaryCofan.isVanKampen_mk {C : Type u} [Category.{v, u} C] {X Y : C} (c : Limits.BinaryCofan X Y) (cofans : (X Y : C) → Limits.BinaryCofan X Y) (colimits : (X Y : C) → Limits.IsColimit (cofans X Y)) (cones : {X Y Z : C} → (f : X Z) → (g : Y Z) → Limits.PullbackCone f g) (limits : {X Y Z : C} → (f : X Z) → (g : Y Z) → Limits.IsLimit (cones f g)) (h₁ : ∀ {X' Y' : C} (αX : X' X) (αY : Y' Y) (f : (cofans X' Y').pt c.pt), CategoryStruct.comp αX c.inl = CategoryStruct.comp (cofans X' Y').inl fCategoryStruct.comp αY c.inr = CategoryStruct.comp (cofans X' Y').inr fIsPullback (cofans X' Y').inl αX f c.inl IsPullback (cofans X' Y').inr αY f c.inr) (h₂ : {Z : C} → (f : Z c.pt) → Limits.IsColimit (Limits.BinaryCofan.mk (cones f c.inl).fst (cones f c.inr).fst)) :
            theorem CategoryTheory.isUniversalColimit_extendCofan {C : Type u} [Category.{v, u} C] {n : } (f : Fin (n + 1)C) {c₁ : Limits.Cofan fun (i : Fin n) => f i.succ} {c₂ : Limits.BinaryCofan (f 0) c₁.pt} (t₁ : IsUniversalColimit c₁) (t₂ : IsUniversalColimit c₂) [∀ {Z : C} (i : Z c₂.pt), Limits.HasPullback c₂.inr i] :
            theorem CategoryTheory.isVanKampenColimit_extendCofan {C : Type u} [Category.{v, u} C] {n : } (f : Fin (n + 1)C) {c₁ : Limits.Cofan fun (i : Fin n) => f i.succ} {c₂ : Limits.BinaryCofan (f 0) c₁.pt} (t₁ : IsVanKampenColimit c₁) (t₂ : IsVanKampenColimit c₂) [∀ {Z : C} (i : Z c₂.pt), Limits.HasPullback c₂.inr i] [Limits.HasFiniteCoproducts C] :
            theorem CategoryTheory.isPullback_of_cofan_isVanKampen {C : Type u} [Category.{v, u} C] [Limits.HasInitial C] {ι : Type u_3} {X : ιC} {c : Limits.Cofan X} (hc : IsVanKampenColimit c) (i j : ι) [DecidableEq ι] :
            IsPullback (if h : j = i then eqToHom else CategoryStruct.comp (eqToHom ) (Limits.initial.to (X i))) (if h : j = i then eqToHom else CategoryStruct.comp (eqToHom ) (Limits.initial.to (X j))) (c.inj i) (c.inj j)
            theorem CategoryTheory.isPullback_initial_to_of_cofan_isVanKampen {C : Type u} [Category.{v, u} C] [Limits.HasInitial C] {ι : Type u_3} {F : Functor (Discrete ι) C} {c : Limits.Cocone F} (hc : IsVanKampenColimit c) (i j : Discrete ι) (hi : i j) :
            IsPullback (Limits.initial.to (F.obj i)) (Limits.initial.to (F.obj j)) (c.app i) (c.app j)
            theorem CategoryTheory.mono_of_cofan_isVanKampen {C : Type u} [Category.{v, u} C] [Limits.HasInitial C] {ι : Type u_3} {F : Functor (Discrete ι) C} {c : Limits.Cocone F} (hc : IsVanKampenColimit c) (i : Discrete ι) :
            Mono (c.app i)