Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.CommSq

Pullback and pushout squares, and bicartesian squares #

We provide another API for pullbacks and pushouts.

IsPullback fst snd f g is the proposition that

  P --fst--> X
  |          |
 snd         f
  |          |
  v          v
  Y ---g---> Z

is a pullback square.

(And similarly for IsPushout.)

We provide the glue to go back and forth to the usual IsLimit API for pullbacks, and prove IsPullback (pullback.fst f g) (pullback.snd f g) f g for the usual pullback f g provided by the HasLimit API.

We don't attempt to restate everything we know about pullbacks in this language, but do restate the pasting lemmas.

We define bicartesian squares, and show that the pullback and pushout squares for a biproduct are bicartesian.

def CategoryTheory.CommSq.cone {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :

The (not necessarily limiting) PullbackCone h i implicit in the statement that we have CommSq f g h i.

Equations
Instances For
    def CategoryTheory.CommSq.cocone {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :

    The (not necessarily limiting) PushoutCocone f g implicit in the statement that we have CommSq f g h i.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.CommSq.cone_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :
      s.cone.fst = f
      @[simp]
      theorem CategoryTheory.CommSq.cone_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :
      s.cone.snd = g
      @[simp]
      theorem CategoryTheory.CommSq.cocone_inl {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :
      s.cocone.inl = h
      @[simp]
      theorem CategoryTheory.CommSq.cocone_inr {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (s : CategoryTheory.CommSq f g h i) :
      s.cocone.inr = i
      def CategoryTheory.CommSq.coneOp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p : CategoryTheory.CommSq f g h i) :
      p.cone.op .cocone

      The pushout cocone in the opposite category associated to the cone of a commutative square identifies to the cocone of the flipped commutative square in the opposite category

      Equations
      Instances For
        def CategoryTheory.CommSq.coconeOp {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p : CategoryTheory.CommSq f g h i) :
        p.cocone.op .cone

        The pullback cone in the opposite category associated to the cocone of a commutative square identifies to the cone of the flipped commutative square in the opposite category

        Equations
        Instances For
          def CategoryTheory.CommSq.coneUnop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : Cᵒᵖ} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p : CategoryTheory.CommSq f g h i) :
          p.cone.unop .cocone

          The pushout cocone obtained from the pullback cone associated to a commutative square in the opposite category identifies to the cocone associated to the flipped square.

          Equations
          Instances For
            def CategoryTheory.CommSq.coconeUnop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : Cᵒᵖ} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p : CategoryTheory.CommSq f g h i) :
            p.cocone.unop .cone

            The pullback cone obtained from the pushout cone associated to a commutative square in the opposite category identifies to the cone associated to the flipped square.

            Equations
            Instances For
              structure CategoryTheory.IsPullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} (fst : P X) (snd : P Y) (f : X Z) (g : Y Z) extends CategoryTheory.CommSq fst snd f g :

              The proposition that a square

                P --fst--> X
                |          |
               snd         f
                |          |
                v          v
                Y ---g---> Z
              
              

              is a pullback square. (Also known as a fibered product or cartesian square.)

              Instances For
                structure CategoryTheory.IsPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} (f : Z X) (g : Z Y) (inl : X P) (inr : Y P) extends CategoryTheory.CommSq f g inl inr :

                The proposition that a square

                  Z ---f---> X
                  |          |
                  g         inl
                  |          |
                  v          v
                  Y --inr--> P
                
                

                is a pushout square. (Also known as a fiber coproduct or cocartesian square.)

                Instances For
                  structure CategoryTheory.BicartesianSq {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} (f : W X) (g : W Y) (h : X Z) (i : Y Z) extends CategoryTheory.IsPullback f g h i, CategoryTheory.IsPushout f g h i :

                  A bicartesian square is a commutative square

                    W ---f---> X
                    |          |
                    g          h
                    |          |
                    v          v
                    Y ---i---> Z
                  
                  

                  that is both a pullback square and a pushout square.

                  Instances For

                    We begin by providing some glue between IsPullback and the IsLimit and HasLimit APIs. (And similarly for IsPushout.)

                    def CategoryTheory.IsPullback.cone {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :

                    The (limiting) PullbackCone f g implicit in the statement that we have an IsPullback fst snd f g.

                    Equations
                    • h.cone = .cone
                    Instances For
                      @[simp]
                      theorem CategoryTheory.IsPullback.cone_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                      h.cone.fst = fst
                      @[simp]
                      theorem CategoryTheory.IsPullback.cone_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                      h.cone.snd = snd
                      noncomputable def CategoryTheory.IsPullback.isLimit {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :

                      The cone obtained from IsPullback fst snd f g is a limit cone.

                      Equations
                      • h.isLimit = .some
                      Instances For
                        noncomputable def CategoryTheory.IsPullback.lift {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (hP : CategoryTheory.IsPullback fst snd f g) {W : C} (h : W X) (k : W Y) (w : CategoryTheory.CategoryStruct.comp h f = CategoryTheory.CategoryStruct.comp k g) :
                        W P

                        API for PullbackCone.IsLimit.lift for IsPullback

                        Equations
                        Instances For
                          @[simp]
                          theorem CategoryTheory.IsPullback.lift_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (hP : CategoryTheory.IsPullback fst snd f g) {W : C} (h : W X) (k : W Y) (w : CategoryTheory.CategoryStruct.comp h f = CategoryTheory.CategoryStruct.comp k g) :
                          @[simp]
                          theorem CategoryTheory.IsPullback.lift_fst_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (hP : CategoryTheory.IsPullback fst snd f g) {W : C} (h : W X) (k : W Y) (w : CategoryTheory.CategoryStruct.comp h f = CategoryTheory.CategoryStruct.comp k g) {Z✝ : C} (h✝ : X Z✝) :
                          @[simp]
                          theorem CategoryTheory.IsPullback.lift_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (hP : CategoryTheory.IsPullback fst snd f g) {W : C} (h : W X) (k : W Y) (w : CategoryTheory.CategoryStruct.comp h f = CategoryTheory.CategoryStruct.comp k g) :
                          @[simp]
                          theorem CategoryTheory.IsPullback.lift_snd_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (hP : CategoryTheory.IsPullback fst snd f g) {W : C} (h : W X) (k : W Y) (w : CategoryTheory.CategoryStruct.comp h f = CategoryTheory.CategoryStruct.comp k g) {Z✝ : C} (h✝ : Y Z✝) :
                          theorem CategoryTheory.IsPullback.hom_ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (hP : CategoryTheory.IsPullback fst snd f g) {W : C} {k l : W P} (h₀ : CategoryTheory.CategoryStruct.comp k fst = CategoryTheory.CategoryStruct.comp l fst) (h₁ : CategoryTheory.CategoryStruct.comp k snd = CategoryTheory.CategoryStruct.comp l snd) :
                          k = l

                          If c is a limiting pullback cone, then we have an IsPullback c.fst c.snd f g.

                          theorem CategoryTheory.IsPullback.of_isLimit' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (w : CategoryTheory.CommSq fst snd f g) (h : CategoryTheory.Limits.IsLimit w.cone) :

                          A variant of of_isLimit that is more useful with apply.

                          theorem CategoryTheory.IsPullback.hasPullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :

                          If c is a limiting binary product cone, and we have a terminal object, then we have IsPullback c.fst c.snd 0 0 (where each 0 is the unique morphism to the terminal object).

                          A variant of of_is_product that is more useful with apply.

                          noncomputable def CategoryTheory.IsPullback.isoIsPullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) :
                          P P'

                          Any object at the top left of a pullback square is isomorphic to the object at the top left of any other pullback square with the same cospan.

                          Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.IsPullback.isoIsPullback_hom_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) :
                            @[simp]
                            theorem CategoryTheory.IsPullback.isoIsPullback_hom_fst_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) {Z✝ : C} (h✝ : X Z✝) :
                            @[simp]
                            theorem CategoryTheory.IsPullback.isoIsPullback_hom_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) :
                            @[simp]
                            theorem CategoryTheory.IsPullback.isoIsPullback_hom_snd_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) {Z✝ : C} (h✝ : Y Z✝) :
                            @[simp]
                            theorem CategoryTheory.IsPullback.isoIsPullback_inv_fst {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) :
                            @[simp]
                            theorem CategoryTheory.IsPullback.isoIsPullback_inv_fst_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) {Z✝ : C} (h✝ : X Z✝) :
                            @[simp]
                            theorem CategoryTheory.IsPullback.isoIsPullback_inv_snd {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) :
                            @[simp]
                            theorem CategoryTheory.IsPullback.isoIsPullback_inv_snd_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P : C} (X Y : C) {Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} {P' : C} {fst' : P' X} {snd' : P' Y} (h : CategoryTheory.IsPullback fst snd f g) (h' : CategoryTheory.IsPullback fst' snd' f g) {Z✝ : C} (h✝ : Y Z✝) :
                            noncomputable def CategoryTheory.IsPullback.isoPullback {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) [CategoryTheory.Limits.HasPullback f g] :

                            Any object at the top left of a pullback square is isomorphic to the pullback provided by the HasLimit API.

                            Equations
                            Instances For
                              theorem CategoryTheory.IsPullback.of_horiz_isIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} [CategoryTheory.IsIso fst] [CategoryTheory.IsIso g] (sq : CategoryTheory.CommSq fst snd f g) :
                              theorem CategoryTheory.IsPullback.of_iso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) {P' X' Y' Z' : C} {fst' : P' X'} {snd' : P' Y'} {f' : X' Z'} {g' : Y' Z'} (e₁ : P P') (e₂ : X X') (e₃ : Y Y') (e₄ : Z Z') (commfst : CategoryTheory.CategoryStruct.comp fst e₂.hom = CategoryTheory.CategoryStruct.comp e₁.hom fst') (commsnd : CategoryTheory.CategoryStruct.comp snd e₃.hom = CategoryTheory.CategoryStruct.comp e₁.hom snd') (commf : CategoryTheory.CategoryStruct.comp f e₄.hom = CategoryTheory.CategoryStruct.comp e₂.hom f') (commg : CategoryTheory.CategoryStruct.comp g e₄.hom = CategoryTheory.CategoryStruct.comp e₃.hom g') :
                              def CategoryTheory.IsPushout.cocone {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :

                              The (colimiting) PushoutCocone f g implicit in the statement that we have an IsPushout f g inl inr.

                              Equations
                              • h.cocone = .cocone
                              Instances For
                                @[simp]
                                theorem CategoryTheory.IsPushout.cocone_inl {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                                h.cocone.inl = inl
                                @[simp]
                                theorem CategoryTheory.IsPushout.cocone_inr {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                                h.cocone.inr = inr
                                noncomputable def CategoryTheory.IsPushout.isColimit {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :

                                The cocone obtained from IsPushout f g inl inr is a colimit cocone.

                                Equations
                                • h.isColimit = .some
                                Instances For
                                  noncomputable def CategoryTheory.IsPushout.desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (hP : CategoryTheory.IsPushout f g inl inr) {W : C} (h : X W) (k : Y W) (w : CategoryTheory.CategoryStruct.comp f h = CategoryTheory.CategoryStruct.comp g k) :
                                  P W

                                  API for PushoutCocone.IsColimit.lift for IsPushout

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.IsPushout.inl_desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (hP : CategoryTheory.IsPushout f g inl inr) {W : C} (h : X W) (k : Y W) (w : CategoryTheory.CategoryStruct.comp f h = CategoryTheory.CategoryStruct.comp g k) :
                                    @[simp]
                                    theorem CategoryTheory.IsPushout.inl_desc_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (hP : CategoryTheory.IsPushout f g inl inr) {W : C} (h : X W) (k : Y W) (w : CategoryTheory.CategoryStruct.comp f h = CategoryTheory.CategoryStruct.comp g k) {Z✝ : C} (h✝ : W Z✝) :
                                    @[simp]
                                    theorem CategoryTheory.IsPushout.inr_desc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (hP : CategoryTheory.IsPushout f g inl inr) {W : C} (h : X W) (k : Y W) (w : CategoryTheory.CategoryStruct.comp f h = CategoryTheory.CategoryStruct.comp g k) :
                                    @[simp]
                                    theorem CategoryTheory.IsPushout.inr_desc_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (hP : CategoryTheory.IsPushout f g inl inr) {W : C} (h : X W) (k : Y W) (w : CategoryTheory.CategoryStruct.comp f h = CategoryTheory.CategoryStruct.comp g k) {Z✝ : C} (h✝ : W Z✝) :
                                    theorem CategoryTheory.IsPushout.hom_ext {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (hP : CategoryTheory.IsPushout f g inl inr) {W : C} {k l : P W} (h₀ : CategoryTheory.CategoryStruct.comp inl k = CategoryTheory.CategoryStruct.comp inl l) (h₁ : CategoryTheory.CategoryStruct.comp inr k = CategoryTheory.CategoryStruct.comp inr l) :
                                    k = l

                                    If c is a colimiting pushout cocone, then we have an IsPushout f g c.inl c.inr.

                                    theorem CategoryTheory.IsPushout.of_isColimit' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (w : CategoryTheory.CommSq f g inl inr) (h : CategoryTheory.Limits.IsColimit w.cocone) :

                                    A variant of of_isColimit that is more useful with apply.

                                    theorem CategoryTheory.IsPushout.hasPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :

                                    If c is a colimiting binary coproduct cocone, and we have an initial object, then we have IsPushout 0 0 c.inl c.inr (where each 0 is the unique morphism from the initial object).

                                    A variant of of_is_coproduct that is more useful with apply.

                                    noncomputable def CategoryTheory.IsPushout.isoIsPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') :
                                    P P'

                                    Any object at the bottom right of a pushout square is isomorphic to the object at the bottom right of any other pushout square with the same span.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem CategoryTheory.IsPushout.inl_isoIsPushout_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') :
                                      @[simp]
                                      theorem CategoryTheory.IsPushout.inl_isoIsPushout_hom_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') {Z✝ : C} (h✝ : P' Z✝) :
                                      @[simp]
                                      theorem CategoryTheory.IsPushout.inr_isoIsPushout_hom {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') :
                                      @[simp]
                                      theorem CategoryTheory.IsPushout.inr_isoIsPushout_hom_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') {Z✝ : C} (h✝ : P' Z✝) :
                                      @[simp]
                                      theorem CategoryTheory.IsPushout.inl_isoIsPushout_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') :
                                      @[simp]
                                      theorem CategoryTheory.IsPushout.inl_isoIsPushout_inv_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') {Z✝ : C} (h✝ : P Z✝) :
                                      @[simp]
                                      theorem CategoryTheory.IsPushout.inr_isoIsPushout_inv {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') :
                                      @[simp]
                                      theorem CategoryTheory.IsPushout.inr_isoIsPushout_inv_assoc {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z : C} (X Y : C) {P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} {P' : C} {inl' : X P'} {inr' : Y P'} (h : CategoryTheory.IsPushout f g inl inr) (h' : CategoryTheory.IsPushout f g inl' inr') {Z✝ : C} (h✝ : P Z✝) :
                                      noncomputable def CategoryTheory.IsPushout.isoPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) [CategoryTheory.Limits.HasPushout f g] :

                                      Any object at the top left of a pullback square is isomorphic to the pullback provided by the HasLimit API.

                                      Equations
                                      Instances For
                                        @[simp]
                                        @[simp]
                                        @[simp]
                                        @[simp]
                                        theorem CategoryTheory.IsPushout.of_iso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) {Z' X' Y' P' : C} {f' : Z' X'} {g' : Z' Y'} {inl' : X' P'} {inr' : Y' P'} (e₁ : Z Z') (e₂ : X X') (e₃ : Y Y') (e₄ : P P') (commf : CategoryTheory.CategoryStruct.comp f e₂.hom = CategoryTheory.CategoryStruct.comp e₁.hom f') (commg : CategoryTheory.CategoryStruct.comp g e₃.hom = CategoryTheory.CategoryStruct.comp e₁.hom g') (comminl : CategoryTheory.CategoryStruct.comp inl e₄.hom = CategoryTheory.CategoryStruct.comp e₂.hom inl') (comminr : CategoryTheory.CategoryStruct.comp inr e₄.hom = CategoryTheory.CategoryStruct.comp e₃.hom inr') :
                                        CategoryTheory.IsPushout f' g' inl' inr'
                                        theorem CategoryTheory.IsPullback.flip {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                                        theorem CategoryTheory.IsPullback.flip_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} :
                                        @[simp]

                                        The square with 0 : 0 ⟶ 0 on the left and 𝟙 X on the right is a pullback square.

                                        @[simp]

                                        The square with 0 : 0 ⟶ 0 on the top and 𝟙 X on the bottom is a pullback square.

                                        @[simp]

                                        The square with 0 : 0 ⟶ 0 on the right and 𝟙 X on the left is a pullback square.

                                        @[simp]

                                        The square with 0 : 0 ⟶ 0 on the bottom and 𝟙 X on the top is a pullback square.

                                        theorem CategoryTheory.IsPullback.paste_vert {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₂₁ X₂₂ X₃₁ X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁) (t : CategoryTheory.IsPullback h₂₁ v₂₁ v₂₂ h₃₁) :

                                        Paste two pullback squares "vertically" to obtain another pullback square.

                                        The objects in the statement fit into the following diagram:

                                        X₁₁ - h₁₁ -> X₁₂
                                        |            |
                                        v₁₁          v₁₂
                                        ↓            ↓
                                        X₂₁ - h₂₁ -> X₂₂
                                        |            |
                                        v₂₁          v₂₂
                                        ↓            ↓
                                        X₃₁ - h₃₁ -> X₃₂
                                        
                                        theorem CategoryTheory.IsPullback.paste_horiz {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₁₃ X₂₁ X₂₂ X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁) (t : CategoryTheory.IsPullback h₁₂ v₁₂ v₁₃ h₂₂) :

                                        Paste two pullback squares "horizontally" to obtain another pullback square.

                                        The objects in the statement fit into the following diagram:

                                        X₁₁ - h₁₁ -> X₁₂ - h₁₂ -> X₁₃
                                        |            |            |
                                        v₁₁          v₁₂          v₁₃
                                        ↓            ↓            ↓
                                        X₂₁ - h₂₁ -> X₂₂ - h₂₂ -> X₂₃
                                        
                                        theorem CategoryTheory.IsPullback.of_bot {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₂₁ X₂₂ X₃₁ X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPullback h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁) (p : CategoryTheory.CategoryStruct.comp h₁₁ v₁₂ = CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) (t : CategoryTheory.IsPullback h₂₁ v₂₁ v₂₂ h₃₁) :
                                        CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁

                                        Given a pullback square assembled from a commuting square on the top and a pullback square on the bottom, the top square is a pullback square.

                                        The objects in the statement fit into the following diagram:

                                        X₁₁ - h₁₁ -> X₁₂
                                        |            |
                                        v₁₁          v₁₂
                                        ↓            ↓
                                        X₂₁ - h₂₁ -> X₂₂
                                        |            |
                                        v₂₁          v₂₂
                                        ↓            ↓
                                        X₃₁ - h₃₁ -> X₃₂
                                        
                                        theorem CategoryTheory.IsPullback.of_right {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₁₃ X₂₁ X₂₂ X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPullback (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂)) (p : CategoryTheory.CategoryStruct.comp h₁₁ v₁₂ = CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) (t : CategoryTheory.IsPullback h₁₂ v₁₂ v₁₃ h₂₂) :
                                        CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁

                                        Given a pullback square assembled from a commuting square on the left and a pullback square on the right, the left square is a pullback square.

                                        The objects in the statement fit into the following diagram:

                                        X₁₁ - h₁₁ -> X₁₂ - h₁₂ -> X₁₃
                                        |            |            |
                                        v₁₁          v₁₂          v₁₃
                                        ↓            ↓            ↓
                                        X₂₁ - h₂₁ -> X₂₂ - h₂₂ -> X₂₃
                                        
                                        theorem CategoryTheory.IsPullback.paste_vert_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₂₁ X₂₂ X₃₁ X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPullback h₂₁ v₂₁ v₂₂ h₃₁) (e : CategoryTheory.CategoryStruct.comp h₁₁ v₁₂ = CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) :
                                        CategoryTheory.IsPullback h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁ CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁
                                        theorem CategoryTheory.IsPullback.paste_horiz_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₁₃ X₂₁ X₂₂ X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPullback h₁₂ v₁₂ v₁₃ h₂₂) (e : CategoryTheory.CategoryStruct.comp h₁₁ v₁₂ = CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) :
                                        CategoryTheory.IsPullback (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂) CategoryTheory.IsPullback h₁₁ v₁₁ v₁₂ h₂₁
                                        theorem CategoryTheory.IsPullback.of_right' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₁₃ X₂₁ X₂₂ X₂₃ : C} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {h₁₃ : X₁₁ X₁₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPullback h₁₃ v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂)) (t : CategoryTheory.IsPullback h₁₂ v₁₂ v₁₃ h₂₂) :
                                        CategoryTheory.IsPullback (t.lift h₁₃ (CategoryTheory.CategoryStruct.comp v₁₁ h₂₁) ) v₁₁ v₁₂ h₂₁

                                        Variant of IsPullback.of_right where h₁₁ is induced from a morphism h₁₃ : X₁₁ ⟶ X₁₃, and the universal property of the right square.

                                        The objects fit in the following diagram:

                                        X₁₁ - h₁₁ -> X₁₂ - h₁₂ -> X₁₃
                                        |            |            |
                                        v₁₁          v₁₂          v₁₃
                                        ↓            ↓            ↓
                                        X₂₁ - h₂₁ -> X₂₂ - h₂₂ -> X₂₃
                                        
                                        theorem CategoryTheory.IsPullback.of_bot' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₂₁ X₂₂ X₃₁ X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₃₁ : X₁₁ X₃₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPullback h₁₁ v₃₁ (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁) (t : CategoryTheory.IsPullback h₂₁ v₂₁ v₂₂ h₃₁) :
                                        CategoryTheory.IsPullback h₁₁ (t.lift (CategoryTheory.CategoryStruct.comp h₁₁ v₁₂) v₃₁ ) v₁₂ h₂₁

                                        Variant of IsPullback.of_bot, where v₁₁ is induced from a morphism v₃₁ : X₁₁ ⟶ X₃₁, and the universal property of the bottom square.

                                        The objects in the statement fit into the following diagram:

                                        X₁₁ - h₁₁ -> X₁₂
                                        |            |
                                        v₁₁          v₁₂
                                        ↓            ↓
                                        X₂₁ - h₂₁ -> X₂₂
                                        |            |
                                        v₂₁          v₂₂
                                        ↓            ↓
                                        X₃₁ - h₃₁ -> X₃₂
                                        
                                        @[simp]

                                        The square

                                          X --inl--> X ⊞ Y
                                          |            |
                                          0           snd
                                          |            |
                                          v            v
                                          0 ---0-----> Y
                                        

                                        is a pullback square.

                                        @[simp]

                                        The square

                                          Y --inr--> X ⊞ Y
                                          |            |
                                          0           fst
                                          |            |
                                          v            v
                                          0 ---0-----> X
                                        

                                        is a pullback square.

                                        The pullback of biprod.inl and biprod.inr is the zero object.

                                        Equations
                                        Instances For
                                          theorem CategoryTheory.IsPullback.op {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                                          CategoryTheory.IsPushout g.op f.op snd.op fst.op
                                          theorem CategoryTheory.IsPullback.unop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : Cᵒᵖ} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} (h : CategoryTheory.IsPullback fst snd f g) :
                                          CategoryTheory.IsPushout g.unop f.unop snd.unop fst.unop
                                          theorem CategoryTheory.IsPullback.of_vert_isIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {P X Y Z : C} {fst : P X} {snd : P Y} {f : X Z} {g : Y Z} [CategoryTheory.IsIso snd] [CategoryTheory.IsIso f] (sq : CategoryTheory.CommSq fst snd f g) :

                                          The following diagram is a pullback

                                          X --f--> Z
                                          |        |
                                          id       id
                                          v        v
                                          X --f--> Z
                                          

                                          The following diagram is a pullback

                                          X --id--> X
                                          |         |
                                          f         f
                                          v         v
                                          Z --id--> Z
                                          
                                          theorem CategoryTheory.IsPushout.flip {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                                          theorem CategoryTheory.IsPushout.flip_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} :
                                          @[simp]

                                          The square with 0 : 0 ⟶ 0 on the right and 𝟙 X on the left is a pushout square.

                                          @[simp]

                                          The square with 0 : 0 ⟶ 0 on the bottom and 𝟙 X on the top is a pushout square.

                                          @[simp]

                                          The square with 0 : 0 ⟶ 0 on the right left 𝟙 X on the right is a pushout square.

                                          @[simp]

                                          The square with 0 : 0 ⟶ 0 on the top and 𝟙 X on the bottom is a pushout square.

                                          theorem CategoryTheory.IsPushout.paste_vert {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₂₁ X₂₂ X₃₁ X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) (t : CategoryTheory.IsPushout h₂₁ v₂₁ v₂₂ h₃₁) :

                                          Paste two pushout squares "vertically" to obtain another pushout square.

                                          The objects in the statement fit into the following diagram:

                                          X₁₁ - h₁₁ -> X₁₂
                                          |            |
                                          v₁₁          v₁₂
                                          ↓            ↓
                                          X₂₁ - h₂₁ -> X₂₂
                                          |            |
                                          v₂₁          v₂₂
                                          ↓            ↓
                                          X₃₁ - h₃₁ -> X₃₂
                                          
                                          theorem CategoryTheory.IsPushout.paste_horiz {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₁₃ X₂₁ X₂₂ X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) (t : CategoryTheory.IsPushout h₁₂ v₁₂ v₁₃ h₂₂) :

                                          Paste two pushout squares "horizontally" to obtain another pushout square.

                                          The objects in the statement fit into the following diagram:

                                          X₁₁ - h₁₁ -> X₁₂ - h₁₂ -> X₁₃
                                          |            |            |
                                          v₁₁          v₁₂          v₁₃
                                          ↓            ↓            ↓
                                          X₂₁ - h₂₁ -> X₂₂ - h₂₂ -> X₂₃
                                          
                                          theorem CategoryTheory.IsPushout.of_top {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₂₁ X₂₂ X₃₁ X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPushout h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁) (p : CategoryTheory.CategoryStruct.comp h₂₁ v₂₂ = CategoryTheory.CategoryStruct.comp v₂₁ h₃₁) (t : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) :
                                          CategoryTheory.IsPushout h₂₁ v₂₁ v₂₂ h₃₁

                                          Given a pushout square assembled from a pushout square on the top and a commuting square on the bottom, the bottom square is a pushout square.

                                          The objects in the statement fit into the following diagram:

                                          X₁₁ - h₁₁ -> X₁₂
                                          |            |
                                          v₁₁          v₁₂
                                          ↓            ↓
                                          X₂₁ - h₂₁ -> X₂₂
                                          |            |
                                          v₂₁          v₂₂
                                          ↓            ↓
                                          X₃₁ - h₃₁ -> X₃₂
                                          
                                          theorem CategoryTheory.IsPushout.of_left {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₁₃ X₂₁ X₂₂ X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPushout (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂)) (p : CategoryTheory.CategoryStruct.comp h₁₂ v₁₃ = CategoryTheory.CategoryStruct.comp v₁₂ h₂₂) (t : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) :
                                          CategoryTheory.IsPushout h₁₂ v₁₂ v₁₃ h₂₂

                                          Given a pushout square assembled from a pushout square on the left and a commuting square on the right, the right square is a pushout square.

                                          The objects in the statement fit into the following diagram:

                                          X₁₁ - h₁₁ -> X₁₂ - h₁₂ -> X₁₃
                                          |            |            |
                                          v₁₁          v₁₂          v₁₃
                                          ↓            ↓            ↓
                                          X₂₁ - h₂₁ -> X₂₂ - h₂₂ -> X₂₃
                                          
                                          theorem CategoryTheory.IsPushout.paste_vert_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₂₁ X₂₂ X₃₁ X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₂₁ : X₂₁ X₃₁} {v₂₂ : X₂₂ X₃₂} (s : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) (e : CategoryTheory.CategoryStruct.comp h₂₁ v₂₂ = CategoryTheory.CategoryStruct.comp v₂₁ h₃₁) :
                                          CategoryTheory.IsPushout h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) (CategoryTheory.CategoryStruct.comp v₁₂ v₂₂) h₃₁ CategoryTheory.IsPushout h₂₁ v₂₁ v₂₂ h₃₁
                                          theorem CategoryTheory.IsPushout.paste_horiz_iff {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₁₃ X₂₁ X₂₂ X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₂ : X₂₂ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) (e : CategoryTheory.CategoryStruct.comp h₁₂ v₁₃ = CategoryTheory.CategoryStruct.comp v₁₂ h₂₂) :
                                          CategoryTheory.IsPushout (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ (CategoryTheory.CategoryStruct.comp h₂₁ h₂₂) CategoryTheory.IsPushout h₁₂ v₁₂ v₁₃ h₂₂
                                          theorem CategoryTheory.IsPushout.of_top' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₂₁ X₂₂ X₃₁ X₃₂ : C} {h₁₁ : X₁₁ X₁₂} {h₂₁ : X₂₁ X₂₂} {h₃₁ : X₃₁ X₃₂} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₂ X₃₂} {v₂₁ : X₂₁ X₃₁} (s : CategoryTheory.IsPushout h₁₁ (CategoryTheory.CategoryStruct.comp v₁₁ v₂₁) v₁₃ h₃₁) (t : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) :
                                          CategoryTheory.IsPushout h₂₁ v₂₁ (t.desc v₁₃ (CategoryTheory.CategoryStruct.comp v₂₁ h₃₁) ) h₃₁

                                          Variant of IsPushout.of_top where v₂₂ is induced from a morphism v₁₃ : X₁₂ ⟶ X₃₂, and the universal property of the top square.

                                          The objects in the statement fit into the following diagram:

                                          X₁₁ - h₁₁ -> X₁₂
                                          |            |
                                          v₁₁          v₁₂
                                          ↓            ↓
                                          X₂₁ - h₂₁ -> X₂₂
                                          |            |
                                          v₂₁          v₂₂
                                          ↓            ↓
                                          X₃₁ - h₃₁ -> X₃₂
                                          
                                          theorem CategoryTheory.IsPushout.of_left' {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X₁₁ X₁₂ X₁₃ X₂₁ X₂₂ X₂₃ : C} {h₁₁ : X₁₁ X₁₂} {h₁₂ : X₁₂ X₁₃} {h₂₁ : X₂₁ X₂₂} {h₂₃ : X₂₁ X₂₃} {v₁₁ : X₁₁ X₂₁} {v₁₂ : X₁₂ X₂₂} {v₁₃ : X₁₃ X₂₃} (s : CategoryTheory.IsPushout (CategoryTheory.CategoryStruct.comp h₁₁ h₁₂) v₁₁ v₁₃ h₂₃) (t : CategoryTheory.IsPushout h₁₁ v₁₁ v₁₂ h₂₁) :
                                          CategoryTheory.IsPushout h₁₂ v₁₂ v₁₃ (t.desc (CategoryTheory.CategoryStruct.comp h₁₂ v₁₃) h₂₃ )

                                          Variant of IsPushout.of_right where h₂₂ is induced from a morphism h₂₃ : X₂₁ ⟶ X₂₃, and the universal property of the left square.

                                          The objects in the statement fit into the following diagram:

                                          X₁₁ - h₁₁ -> X₁₂ - h₁₂ -> X₁₃
                                          |            |            |
                                          v₁₁          v₁₂          v₁₃
                                          ↓            ↓            ↓
                                          X₂₁ - h₂₁ -> X₂₂ - h₂₂ -> X₂₃
                                          

                                          The square

                                            X --inl--> X ⊞ Y
                                            |            |
                                            0           snd
                                            |            |
                                            v            v
                                            0 ---0-----> Y
                                          

                                          is a pushout square.

                                          The square

                                            Y --inr--> X ⊞ Y
                                            |            |
                                            0           fst
                                            |            |
                                            v            v
                                            0 ---0-----> X
                                          

                                          is a pushout square.

                                          The pushout of biprod.fst and biprod.snd is the zero object.

                                          Equations
                                          Instances For
                                            theorem CategoryTheory.IsPushout.op {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                                            CategoryTheory.IsPullback inr.op inl.op g.op f.op
                                            theorem CategoryTheory.IsPushout.unop {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : Cᵒᵖ} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} (h : CategoryTheory.IsPushout f g inl inr) :
                                            CategoryTheory.IsPullback inr.unop inl.unop g.unop f.unop
                                            theorem CategoryTheory.IsPushout.of_horiz_isIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} [CategoryTheory.IsIso f] [CategoryTheory.IsIso inr] (sq : CategoryTheory.CommSq f g inl inr) :
                                            theorem CategoryTheory.IsPushout.of_vert_isIso {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {Z X Y P : C} {f : Z X} {g : Z Y} {inl : X P} {inr : Y P} [CategoryTheory.IsIso g] [CategoryTheory.IsIso inl] (sq : CategoryTheory.CommSq f g inl inr) :

                                            The following diagram is a pullback

                                            X --f--> Z
                                            |        |
                                            id       id
                                            v        v
                                            X --f--> Z
                                            

                                            The following diagram is a pullback

                                            X --id--> X
                                            |         |
                                            f         f
                                            v         v
                                            Z --id--> Z
                                            

                                            If f : X ⟶ Y, g g' : Y ⟶ Z forms a pullback square, then f is the equalizer of g and g'.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For

                                              If f f' : X ⟶ Y, g : Y ⟶ Z forms a pushout square, then g is the coequalizer of f and f'.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                theorem CategoryTheory.BicartesianSq.of_isPullback_isPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p₁ : CategoryTheory.IsPullback f g h i) (p₂ : CategoryTheory.IsPushout f g h i) :
                                                theorem CategoryTheory.BicartesianSq.flip {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} (p : CategoryTheory.BicartesianSq f g h i) :
                                                 X ⊞ Y --fst--> X
                                                   |            |
                                                  snd           0
                                                   |            |
                                                   v            v
                                                   Y -----0---> 0
                                                

                                                is a bicartesian square.

                                                   0 -----0---> X
                                                   |            |
                                                   0           inl
                                                   |            |
                                                   v            v
                                                   Y --inr--> X ⊞ Y
                                                

                                                is a bicartesian square.

                                                @[simp]
                                                 X ⊞ Y --fst--> X
                                                   |            |
                                                  snd           0
                                                   |            |
                                                   v            v
                                                   Y -----0---> 0
                                                

                                                is a bicartesian square.

                                                @[simp]
                                                   0 -----0---> X
                                                   |            |
                                                   0           inl
                                                   |            |
                                                   v            v
                                                   Y --inr--> X ⊞ Y
                                                

                                                is a bicartesian square.

                                                theorem CategoryTheory.Functor.map_isPushout {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} [CategoryTheory.Limits.PreservesColimit (CategoryTheory.Limits.span f g) F] (s : CategoryTheory.IsPushout f g h i) :
                                                CategoryTheory.IsPushout (F.map f) (F.map g) (F.map h) (F.map i)
                                                theorem CategoryTheory.IsPullback.of_map_of_faithful {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} [CategoryTheory.Limits.ReflectsLimit (CategoryTheory.Limits.cospan h i) F] [F.Faithful] (H : CategoryTheory.IsPullback (F.map f) (F.map g) (F.map h) (F.map i)) :
                                                theorem CategoryTheory.IsPushout.of_map_of_faithful {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (F : CategoryTheory.Functor C D) {W X Y Z : C} {f : W X} {g : W Y} {h : X Z} {i : Y Z} [CategoryTheory.Limits.ReflectsColimit (CategoryTheory.Limits.span f g) F] [F.Faithful] (H : CategoryTheory.IsPushout (F.map f) (F.map g) (F.map h) (F.map i)) :