Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.PullbackCone

PullbackCone #

This file provides API for interacting with cones (resp. cocones) in the case of pullbacks (resp. pushouts).

Main definitions #

t.pt ---t.snd---> Y
  |               |
 t.fst            g
  |               |
  v               v
  X -----f------> Z

The type PullbackCone f g is implemented as an abbrevation for Cone (cospan f g), so general results about cones are also available for PullbackCone f g.

  X -----f------> Y
  |               |
  g               t.inr
  |               |
  v               v
  Z ---t.inl---> t.pt

Similar to PullbackCone, PushoutCone f g is implemented as an abbreviation for Cocone (span f g), so general results about cocones are also available for PushoutCone f g.

API #

We summarize the most important parts of the API for pullback cones here. The dual notions for pushout cones is also available in this file.

Various ways of constructing pullback cones:

Interaction with IsLimit:

References #

@[reducible, inline]
abbrev CategoryTheory.Limits.PullbackCone {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : X Z) (g : Y Z) :
Type (max u v)

A pullback cone is just a cone on the cospan formed by two morphisms f : X ⟶ Z and g : Y ⟶ Z.

Equations
Instances For
    @[reducible, inline]
    abbrev CategoryTheory.Limits.PullbackCone.fst {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} (t : CategoryTheory.Limits.PullbackCone f g) :
    t.pt X

    The first projection of a pullback cone.

    Equations
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.Limits.PullbackCone.snd {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} (t : CategoryTheory.Limits.PullbackCone f g) :
      t.pt Y

      The second projection of a pullback cone.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Limits.PullbackCone.mk_pt {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} {W : C} (fst : W X) (snd : W Y) (eq : CategoryTheory.CategoryStruct.comp fst f = CategoryTheory.CategoryStruct.comp snd g) :
        def CategoryTheory.Limits.PullbackCone.mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} {W : C} (fst : W X) (snd : W Y) (eq : CategoryTheory.CategoryStruct.comp fst f = CategoryTheory.CategoryStruct.comp snd g) :

        A pullback cone on f and g is determined by morphisms fst : W ⟶ X and snd : W ⟶ Y such that fst ≫ f = snd ≫ g.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Limits.PullbackCone.mk_fst {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} {W : C} (fst : W X) (snd : W Y) (eq : CategoryTheory.CategoryStruct.comp fst f = CategoryTheory.CategoryStruct.comp snd g) :
          @[simp]
          theorem CategoryTheory.Limits.PullbackCone.mk_snd {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} {W : C} (fst : W X) (snd : W Y) (eq : CategoryTheory.CategoryStruct.comp fst f = CategoryTheory.CategoryStruct.comp snd g) :

          To check whether two morphisms are equalized by the maps of a pullback cone, it suffices to check it for fst t and snd t

          def CategoryTheory.Limits.PullbackCone.ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} {s : CategoryTheory.Limits.PullbackCone f g} {t : CategoryTheory.Limits.PullbackCone f g} (i : s.pt t.pt) (w₁ : s.fst = CategoryTheory.CategoryStruct.comp i.hom t.fst) (w₂ : s.snd = CategoryTheory.CategoryStruct.comp i.hom t.snd) :
          s t

          To construct an isomorphism of pullback cones, it suffices to construct an isomorphism of the cone points and check it commutes with fst and snd.

          Equations
          Instances For
            def CategoryTheory.Limits.PullbackCone.isLimitAux {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} (t : CategoryTheory.Limits.PullbackCone f g) (lift : (s : CategoryTheory.Limits.PullbackCone f g) → s.pt t.pt) (fac_left : ∀ (s : CategoryTheory.Limits.PullbackCone f g), CategoryTheory.CategoryStruct.comp (lift s) t.fst = s.fst) (fac_right : ∀ (s : CategoryTheory.Limits.PullbackCone f g), CategoryTheory.CategoryStruct.comp (lift s) t.snd = s.snd) (uniq : ∀ (s : CategoryTheory.Limits.PullbackCone f g) (m : s.pt t.pt), (∀ (j : CategoryTheory.Limits.WalkingCospan), CategoryTheory.CategoryStruct.comp m (t.app j) = s.app j)m = lift s) :

            This is a slightly more convenient method to verify that a pullback cone is a limit cone. It only asks for a proof of facts that carry any mathematical content

            Equations
            • t.isLimitAux lift fac_left fac_right uniq = { lift := lift, fac := , uniq := uniq }
            Instances For
              def CategoryTheory.Limits.PullbackCone.isLimitAux' {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} (t : CategoryTheory.Limits.PullbackCone f g) (create : (s : CategoryTheory.Limits.PullbackCone f g) → { l : s.pt t.pt // CategoryTheory.CategoryStruct.comp l t.fst = s.fst CategoryTheory.CategoryStruct.comp l t.snd = s.snd ∀ {m : s.pt t.pt}, CategoryTheory.CategoryStruct.comp m t.fst = s.fstCategoryTheory.CategoryStruct.comp m t.snd = s.sndm = l }) :

              This is another convenient method to verify that a pullback cone is a limit cone. It only asks for a proof of facts that carry any mathematical content, and allows access to the same s for all parts.

              Equations
              Instances For
                def CategoryTheory.Limits.PullbackCone.IsLimit.mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} {W : C} {fst : W X} {snd : W Y} (eq : CategoryTheory.CategoryStruct.comp fst f = CategoryTheory.CategoryStruct.comp snd g) (lift : (s : CategoryTheory.Limits.PullbackCone f g) → s.pt W) (fac_left : ∀ (s : CategoryTheory.Limits.PullbackCone f g), CategoryTheory.CategoryStruct.comp (lift s) fst = s.fst) (fac_right : ∀ (s : CategoryTheory.Limits.PullbackCone f g), CategoryTheory.CategoryStruct.comp (lift s) snd = s.snd) (uniq : ∀ (s : CategoryTheory.Limits.PullbackCone f g) (m : s.pt W), CategoryTheory.CategoryStruct.comp m fst = s.fstCategoryTheory.CategoryStruct.comp m snd = s.sndm = lift s) :

                This is a more convenient formulation to show that a PullbackCone constructed using PullbackCone.mk is a limit cone.

                Equations
                Instances For

                  If t is a limit pullback cone over f and g and h : W ⟶ X and k : W ⟶ Y are such that h ≫ f = k ≫ g, then we get l : W ⟶ t.pt, which satisfies l ≫ fst t = h and l ≫ snd t = k, see IsLimit.lift_fst and IsLimit.lift_snd.

                  Equations
                  Instances For

                    If t is a limit pullback cone over f and g and h : W ⟶ X and k : W ⟶ Y are such that h ≫ f = k ≫ g, then we have l : W ⟶ t.pt satisfying l ≫ fst t = h and l ≫ snd t = k.

                    Equations
                    Instances For

                      The pullback cone obtained by flipping fst and snd.

                      Equations
                      Instances For
                        @[simp]
                        theorem CategoryTheory.Limits.PullbackCone.flip_pt {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} (t : CategoryTheory.Limits.PullbackCone f g) :
                        t.flip.pt = t.pt
                        @[simp]
                        theorem CategoryTheory.Limits.PullbackCone.flip_fst {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} (t : CategoryTheory.Limits.PullbackCone f g) :
                        t.flip.fst = t.snd
                        @[simp]
                        theorem CategoryTheory.Limits.PullbackCone.flip_snd {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} (t : CategoryTheory.Limits.PullbackCone f g) :
                        t.flip.snd = t.fst
                        def CategoryTheory.Limits.PullbackCone.flipFlipIso {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Z} {g : Y Z} (t : CategoryTheory.Limits.PullbackCone f g) :
                        t.flip.flip t

                        Flipping a pullback cone twice gives an isomorphic cone.

                        Equations
                        Instances For

                          The flip of a pullback square is a pullback square.

                          Equations
                          Instances For

                            A square is a pullback square if its flip is.

                            Equations
                            Instances For

                              This is a helper construction that can be useful when verifying that a category has all pullbacks. Given F : WalkingCospan ⥤ C, which is really the same as cospan (F.map inl) (F.map inr), and a pullback cone on F.map inl and F.map inr, we get a cone on F.

                              If you're thinking about using this, have a look at hasPullbacks_of_hasLimit_cospan, which you may find to be an easier way of achieving your goal.

                              Equations
                              Instances For

                                Given F : WalkingCospan ⥤ C, which is really the same as cospan (F.map inl) (F.map inr), and a cone on F, we get a pullback cone on F.map inl and F.map inr.

                                Equations
                                Instances For

                                  A diagram WalkingCospan ⥤ C is isomorphic to some PullbackCone.mk after composing with diagramIsoCospan.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[reducible, inline]
                                    abbrev CategoryTheory.Limits.PushoutCocone {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} (f : X Y) (g : X Z) :
                                    Type (max u v)

                                    A pushout cocone is just a cocone on the span formed by two morphisms f : X ⟶ Y and g : X ⟶ Z.

                                    Equations
                                    Instances For
                                      @[reducible, inline]
                                      abbrev CategoryTheory.Limits.PushoutCocone.inl {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} (t : CategoryTheory.Limits.PushoutCocone f g) :
                                      Y t.pt

                                      The first inclusion of a pushout cocone.

                                      Equations
                                      Instances For
                                        @[reducible, inline]
                                        abbrev CategoryTheory.Limits.PushoutCocone.inr {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} (t : CategoryTheory.Limits.PushoutCocone f g) :
                                        Z t.pt

                                        The second inclusion of a pushout cocone.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Limits.PushoutCocone.mk_pt {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} {W : C} (inl : Y W) (inr : Z W) (eq : CategoryTheory.CategoryStruct.comp f inl = CategoryTheory.CategoryStruct.comp g inr) :
                                          def CategoryTheory.Limits.PushoutCocone.mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} {W : C} (inl : Y W) (inr : Z W) (eq : CategoryTheory.CategoryStruct.comp f inl = CategoryTheory.CategoryStruct.comp g inr) :

                                          A pushout cocone on f and g is determined by morphisms inl : Y ⟶ W and inr : Z ⟶ W such that f ≫ inl = g ↠ inr.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem CategoryTheory.Limits.PushoutCocone.mk_inl {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} {W : C} (inl : Y W) (inr : Z W) (eq : CategoryTheory.CategoryStruct.comp f inl = CategoryTheory.CategoryStruct.comp g inr) :
                                            @[simp]
                                            theorem CategoryTheory.Limits.PushoutCocone.mk_inr {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} {W : C} (inl : Y W) (inr : Z W) (eq : CategoryTheory.CategoryStruct.comp f inl = CategoryTheory.CategoryStruct.comp g inr) :

                                            To check whether a morphism is coequalized by the maps of a pushout cocone, it suffices to check it for inl t and inr t

                                            def CategoryTheory.Limits.PushoutCocone.ext {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} {s : CategoryTheory.Limits.PushoutCocone f g} {t : CategoryTheory.Limits.PushoutCocone f g} (i : s.pt t.pt) (w₁ : CategoryTheory.CategoryStruct.comp s.inl i.hom = t.inl) (w₂ : CategoryTheory.CategoryStruct.comp s.inr i.hom = t.inr) :
                                            s t

                                            To construct an isomorphism of pushout cocones, it suffices to construct an isomorphism of the cocone points and check it commutes with inl and inr.

                                            Equations
                                            Instances For
                                              def CategoryTheory.Limits.PushoutCocone.isColimitAux {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} (t : CategoryTheory.Limits.PushoutCocone f g) (desc : (s : CategoryTheory.Limits.PushoutCocone f g) → t.pt s.pt) (fac_left : ∀ (s : CategoryTheory.Limits.PushoutCocone f g), CategoryTheory.CategoryStruct.comp t.inl (desc s) = s.inl) (fac_right : ∀ (s : CategoryTheory.Limits.PushoutCocone f g), CategoryTheory.CategoryStruct.comp t.inr (desc s) = s.inr) (uniq : ∀ (s : CategoryTheory.Limits.PushoutCocone f g) (m : t.pt s.pt), (∀ (j : CategoryTheory.Limits.WalkingSpan), CategoryTheory.CategoryStruct.comp (t.app j) m = s.app j)m = desc s) :

                                              This is a slightly more convenient method to verify that a pushout cocone is a colimit cocone. It only asks for a proof of facts that carry any mathematical content

                                              Equations
                                              • t.isColimitAux desc fac_left fac_right uniq = { desc := desc, fac := , uniq := uniq }
                                              Instances For

                                                This is another convenient method to verify that a pushout cocone is a colimit cocone. It only asks for a proof of facts that carry any mathematical content, and allows access to the same s for all parts.

                                                Equations
                                                Instances For

                                                  If t is a colimit pushout cocone over f and g and h : Y ⟶ W and k : Z ⟶ W are morphisms satisfying f ≫ h = g ≫ k, then we have a factorization l : t.pt ⟶ W such that inl t ≫ l = h and inr t ≫ l = k, see IsColimit.inl_desc and IsColimit.inr_desc

                                                  Equations
                                                  Instances For

                                                    If t is a colimit pushout cocone over f and g and h : Y ⟶ W and k : Z ⟶ W are morphisms satisfying f ≫ h = g ≫ k, then we have a factorization l : t.pt ⟶ W such that inl t ≫ l = h and inr t ≫ l = k.

                                                    Equations
                                                    Instances For
                                                      def CategoryTheory.Limits.PushoutCocone.IsColimit.mk {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} {W : C} {inl : Y W} {inr : Z W} (eq : CategoryTheory.CategoryStruct.comp f inl = CategoryTheory.CategoryStruct.comp g inr) (desc : (s : CategoryTheory.Limits.PushoutCocone f g) → W s.pt) (fac_left : ∀ (s : CategoryTheory.Limits.PushoutCocone f g), CategoryTheory.CategoryStruct.comp inl (desc s) = s.inl) (fac_right : ∀ (s : CategoryTheory.Limits.PushoutCocone f g), CategoryTheory.CategoryStruct.comp inr (desc s) = s.inr) (uniq : ∀ (s : CategoryTheory.Limits.PushoutCocone f g) (m : W s.pt), CategoryTheory.CategoryStruct.comp inl m = s.inlCategoryTheory.CategoryStruct.comp inr m = s.inrm = desc s) :

                                                      This is a more convenient formulation to show that a PushoutCocone constructed using PushoutCocone.mk is a colimit cocone.

                                                      Equations
                                                      Instances For

                                                        The pushout cocone obtained by flipping inl and inr.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem CategoryTheory.Limits.PushoutCocone.flip_pt {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} (t : CategoryTheory.Limits.PushoutCocone f g) :
                                                          t.flip.pt = t.pt
                                                          @[simp]
                                                          theorem CategoryTheory.Limits.PushoutCocone.flip_inl {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} (t : CategoryTheory.Limits.PushoutCocone f g) :
                                                          t.flip.inl = t.inr
                                                          @[simp]
                                                          theorem CategoryTheory.Limits.PushoutCocone.flip_inr {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} (t : CategoryTheory.Limits.PushoutCocone f g) :
                                                          t.flip.inr = t.inl
                                                          def CategoryTheory.Limits.PushoutCocone.flipFlipIso {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {f : X Y} {g : X Z} (t : CategoryTheory.Limits.PushoutCocone f g) :
                                                          t.flip.flip t

                                                          Flipping a pushout cocone twice gives an isomorphic cocone.

                                                          Equations
                                                          Instances For

                                                            The flip of a pushout square is a pushout square.

                                                            Equations
                                                            Instances For

                                                              A square is a pushout square if its flip is.

                                                              Equations
                                                              Instances For

                                                                This is a helper construction that can be useful when verifying that a category has all pushout. Given F : WalkingSpan ⥤ C, which is really the same as span (F.map fst) (F.map snd), and a pushout cocone on F.map fst and F.map snd, we get a cocone on F.

                                                                If you're thinking about using this, have a look at hasPushouts_of_hasColimit_span, which you may find to be an easier way of achieving your goal.

                                                                Equations
                                                                Instances For

                                                                  Given F : WalkingSpan ⥤ C, which is really the same as span (F.map fst) (F.map snd), and a cocone on F, we get a pushout cocone on F.map fst and F.map snd.

                                                                  Equations
                                                                  Instances For

                                                                    A diagram WalkingSpan ⥤ C is isomorphic to some PushoutCocone.mk after composing with diagramIsoSpan.

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For