Documentation

Mathlib.CategoryTheory.Limits.Shapes.Opposites.Pullbacks

Pullbacks and pushouts in C and Cᵒᵖ #

We construct pullbacks and pushouts in the opposite categories.

def CategoryTheory.Limits.spanOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) :

The canonical isomorphism relating Span f.op g.op and (Cospan f g).op

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem CategoryTheory.Limits.spanOp_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) (X✝ : WalkingSpan) :
    @[simp]
    theorem CategoryTheory.Limits.spanOp_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) (X✝ : WalkingSpan) :
    def CategoryTheory.Limits.opCospan {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) :

    The canonical isomorphism relating (Cospan f g).op and Span f.op g.op

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem CategoryTheory.Limits.opCospan_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) (X✝ : WalkingCospanᵒᵖ) :
      @[simp]
      theorem CategoryTheory.Limits.opCospan_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) (X✝ : WalkingCospanᵒᵖ) :
      def CategoryTheory.Limits.cospanOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) :

      The canonical isomorphism relating Cospan f.op g.op and (Span f g).op

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem CategoryTheory.Limits.cospanOp_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) (X✝ : WalkingCospan) :
        @[simp]
        theorem CategoryTheory.Limits.cospanOp_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) (X✝ : WalkingCospan) :
        def CategoryTheory.Limits.opSpan {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) :

        The canonical isomorphism relating (Span f g).op and Cospan f.op g.op

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.Limits.opSpan_hom_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) (X✝ : WalkingSpanᵒᵖ) :
          @[simp]
          theorem CategoryTheory.Limits.opSpan_inv_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Y) (g : X Z) (X✝ : WalkingSpanᵒᵖ) :
          def CategoryTheory.Limits.PushoutCocone.unop {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :

          The obvious map PushoutCocone f g → PullbackCone f.unop g.unop

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Limits.PushoutCocone.unop_pt {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
            @[simp]
            theorem CategoryTheory.Limits.PushoutCocone.unop_π_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) (X✝ : WalkingCospan) :
            c.unop.π.app X✝ = CategoryStruct.comp (c.ι.app X✝).unop (Option.rec (Iso.refl X) (fun (val : WalkingPair) => WalkingPair.rec (Iso.refl Y) (Iso.refl Z) val) X✝).inv.unop
            theorem CategoryTheory.Limits.PushoutCocone.unop_fst {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
            theorem CategoryTheory.Limits.PushoutCocone.unop_snd {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
            def CategoryTheory.Limits.PushoutCocone.op {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :

            The obvious map PushoutCocone f.op g.op → PullbackCone f g

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Limits.PushoutCocone.op_pt {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
              @[simp]
              theorem CategoryTheory.Limits.PushoutCocone.op_π_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) (X✝ : WalkingCospan) :
              theorem CategoryTheory.Limits.PushoutCocone.op_fst {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
              c.op.fst = c.inl.op
              theorem CategoryTheory.Limits.PushoutCocone.op_snd {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
              c.op.snd = c.inr.op
              def CategoryTheory.Limits.PullbackCone.unop {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :

              The obvious map PullbackCone f g → PushoutCocone f.unop g.unop

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.Limits.PullbackCone.unop_ι_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) (X✝ : WalkingSpan) :
                c.unop.ι.app X✝ = CategoryStruct.comp (Option.rec (Iso.refl Z) (fun (val : WalkingPair) => WalkingPair.rec (Iso.refl X) (Iso.refl Y) val) X✝).hom.unop (c.π.app X✝).unop
                @[simp]
                theorem CategoryTheory.Limits.PullbackCone.unop_pt {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                theorem CategoryTheory.Limits.PullbackCone.unop_inl {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                theorem CategoryTheory.Limits.PullbackCone.unop_inr {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                def CategoryTheory.Limits.PullbackCone.op {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :

                The obvious map PullbackCone f g → PushoutCocone f.op g.op

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.Limits.PullbackCone.op_ι_app {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) (X✝ : WalkingSpan) :
                  @[simp]
                  theorem CategoryTheory.Limits.PullbackCone.op_pt {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                  theorem CategoryTheory.Limits.PullbackCone.op_inl {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                  c.op.inl = c.fst.op
                  theorem CategoryTheory.Limits.PullbackCone.op_inr {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                  c.op.inr = c.snd.op
                  def CategoryTheory.Limits.PullbackCone.opUnop {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                  c.op.unop c

                  If c is a pullback cone, then c.op.unop is isomorphic to c.

                  Equations
                  Instances For
                    def CategoryTheory.Limits.PullbackCone.unopOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Z} {g : Y Z} (c : PullbackCone f g) :
                    c.unop.op c

                    If c is a pullback cone in Cᵒᵖ, then c.unop.op is isomorphic to c.

                    Equations
                    Instances For
                      def CategoryTheory.Limits.PushoutCocone.opUnop {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                      c.op.unop c

                      If c is a pushout cocone, then c.op.unop is isomorphic to c.

                      Equations
                      Instances For
                        def CategoryTheory.Limits.PushoutCocone.unopOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : Cᵒᵖ} {f : X Y} {g : X Z} (c : PushoutCocone f g) :
                        c.unop.op c

                        If c is a pushout cocone in Cᵒᵖ, then c.unop.op is isomorphic to c.

                        Equations
                        Instances For
                          noncomputable def CategoryTheory.Limits.PushoutCocone.isColimitEquivIsLimitOp {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} {f : X Y} {g : X Z} (c : PushoutCocone f g) :

                          A pushout cone is a colimit cocone if and only if the corresponding pullback cone in the opposite category is a limit cone.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            A pushout cone is a colimit cocone in Cᵒᵖ if and only if the corresponding pullback cone in C is a limit cone.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              A pullback cone is a limit cone if and only if the corresponding pushout cocone in the opposite category is a colimit cocone.

                              Equations
                              Instances For

                                A pullback cone is a limit cone in Cᵒᵖ if and only if the corresponding pushout cocone in C is a colimit cocone.

                                Equations
                                Instances For
                                  noncomputable def CategoryTheory.Limits.pullbackIsoUnopPushout {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : Y Z) [h : HasPullback f g] [HasPushout f.op g.op] :

                                  The pullback of f and g in C is isomorphic to the pushout of f.op and g.op in Cᵒᵖ.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    noncomputable def CategoryTheory.Limits.pushoutIsoUnopPullback {C : Type u₁} [Category.{v₁, u₁} C] {X Y Z : C} (f : X Z) (g : X Y) [h : HasPushout f g] [HasPullback f.op g.op] :

                                    The pushout of f and g in C is isomorphic to the pullback of f.op and g.op in Cᵒᵖ.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For