Documentation

Mathlib.CategoryTheory.Limits.Shapes.Pullback.Iso

The pullback of an isomorphism #

This file provides some basic results about the pullback (and pushout) of an isomorphism.

def CategoryTheory.Limits.pullbackConeOfLeftIso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :

If f : X ⟶ Z is iso, then X ×[Z] Y ≅ Y. This is the explicit limit cone.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Limits.pullbackConeOfLeftIso_x {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :
    @[simp]
    theorem CategoryTheory.Limits.pullbackConeOfLeftIso_fst {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :
    theorem CategoryTheory.Limits.pullbackConeOfLeftIso_π_app_none {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :

    Verify that the constructed limit cone is indeed a limit.

    Equations
    Instances For
      theorem CategoryTheory.Limits.hasPullback_of_left_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :
      instance CategoryTheory.Limits.pullback_snd_iso_of_left_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso f] :
      def CategoryTheory.Limits.pullbackConeOfRightIso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :

      If g : Y ⟶ Z is iso, then X ×[Z] Y ≅ X. This is the explicit limit cone.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.Limits.pullbackConeOfRightIso_x {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :
        @[simp]
        theorem CategoryTheory.Limits.pullbackConeOfRightIso_snd {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :
        theorem CategoryTheory.Limits.pullbackConeOfRightIso_π_app_none {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :

        Verify that the constructed limit cone is indeed a limit.

        Equations
        Instances For
          theorem CategoryTheory.Limits.hasPullback_of_right_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :
          instance CategoryTheory.Limits.pullback_snd_iso_of_right_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Z) (g : Y Z) [IsIso g] :
          def CategoryTheory.Limits.pushoutCoconeOfLeftIso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :

          If f : X ⟶ Y is iso, then Y ⨿[X] Z ≅ Z. This is the explicit colimit cocone.

          Equations
          Instances For
            @[simp]
            theorem CategoryTheory.Limits.pushoutCoconeOfLeftIso_x {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :
            @[simp]
            theorem CategoryTheory.Limits.pushoutCoconeOfLeftIso_inl {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :
            @[simp]
            theorem CategoryTheory.Limits.pushoutCoconeOfLeftIso_ι_app_none {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :

            Verify that the constructed cocone is indeed a colimit.

            Equations
            Instances For
              theorem CategoryTheory.Limits.hasPushout_of_left_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :
              instance CategoryTheory.Limits.pushout_inr_iso_of_left_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso f] :
              def CategoryTheory.Limits.pushoutCoconeOfRightIso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso g] :

              If f : X ⟶ Z is iso, then Y ⨿[X] Z ≅ Y. This is the explicit colimit cocone.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.Limits.pushoutCoconeOfRightIso_x {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso g] :
                @[simp]
                @[simp]

                Verify that the constructed cocone is indeed a colimit.

                Equations
                Instances For
                  theorem CategoryTheory.Limits.hasPushout_of_right_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso g] :
                  instance CategoryTheory.Limits.pushout_inl_iso_of_right_iso {C : Type u} [Category.{v, u} C] {X Y Z : C} (f : X Y) (g : X Z) [IsIso g] :