Harris-Kleitman inequality #
This file proves the Harris-Kleitman inequality. This relates #𝒜 * #ℬ
and
2 ^ card α * #(𝒜 ∩ ℬ)
where 𝒜
and ℬ
are upward- or downcard-closed finite families of
finsets. This can be interpreted as saying that any two lower sets (resp. any two upper sets)
correlate in the uniform measure.
Main declarations #
IsLowerSet.le_card_inter_finset
: One form of the Harris-Kleitman inequality.
References #
theorem
IsLowerSet.nonMemberSubfamily
{α : Type u_1}
[DecidableEq α]
{𝒜 : Finset (Finset α)}
{a : α}
(h : IsLowerSet ↑𝒜)
:
theorem
IsLowerSet.memberSubfamily
{α : Type u_1}
[DecidableEq α]
{𝒜 : Finset (Finset α)}
{a : α}
(h : IsLowerSet ↑𝒜)
:
IsLowerSet ↑(Finset.memberSubfamily a 𝒜)
theorem
IsLowerSet.memberSubfamily_subset_nonMemberSubfamily
{α : Type u_1}
[DecidableEq α]
{𝒜 : Finset (Finset α)}
{a : α}
(h : IsLowerSet ↑𝒜)
:
theorem
IsLowerSet.le_card_inter_finset'
{α : Type u_1}
[DecidableEq α]
{𝒜 ℬ : Finset (Finset α)}
{s : Finset α}
(h𝒜 : IsLowerSet ↑𝒜)
(hℬ : IsLowerSet ↑ℬ)
(h𝒜s : ∀ t ∈ 𝒜, t ⊆ s)
(hℬs : ∀ t ∈ ℬ, t ⊆ s)
:
Harris-Kleitman inequality: Any two lower sets of finsets correlate.
theorem
IsLowerSet.le_card_inter_finset
{α : Type u_1}
[DecidableEq α]
{𝒜 ℬ : Finset (Finset α)}
[Fintype α]
(h𝒜 : IsLowerSet ↑𝒜)
(hℬ : IsLowerSet ↑ℬ)
:
Harris-Kleitman inequality: Any two lower sets of finsets correlate.
theorem
IsUpperSet.card_inter_le_finset
{α : Type u_1}
[DecidableEq α]
{𝒜 ℬ : Finset (Finset α)}
[Fintype α]
(h𝒜 : IsUpperSet ↑𝒜)
(hℬ : IsLowerSet ↑ℬ)
:
Harris-Kleitman inequality: Upper sets and lower sets of finsets anticorrelate.
theorem
IsLowerSet.card_inter_le_finset
{α : Type u_1}
[DecidableEq α]
{𝒜 ℬ : Finset (Finset α)}
[Fintype α]
(h𝒜 : IsLowerSet ↑𝒜)
(hℬ : IsUpperSet ↑ℬ)
:
Harris-Kleitman inequality: Lower sets and upper sets of finsets anticorrelate.
theorem
IsUpperSet.le_card_inter_finset
{α : Type u_1}
[DecidableEq α]
{𝒜 ℬ : Finset (Finset α)}
[Fintype α]
(h𝒜 : IsUpperSet ↑𝒜)
(hℬ : IsUpperSet ↑ℬ)
:
Harris-Kleitman inequality: Any two upper sets of finsets correlate.