Documentation

Mathlib.RingTheory.Jacobson.Radical

Jacobson radical of modules and rings #

Main definitions #

Module.jacobson R M: the Jacobson radical of a module M over a ring R is defined to be the intersection of all maximal submodules of M.

Ring.jacobson R: the Jacobson radical of a ring R is the Jacobson radical of R as an R-module, which is equal to the intersection of all maximal left ideals of R. It turns out it is in fact a two-sided ideal, and equals the intersection of all maximal right ideals of R.

Reference #

def Module.jacobson (R : Type u_1) (M : Type u_3) [Ring R] [AddCommGroup M] [Module R M] :

The Jacobson radical of an R-module M is the infimum of all maximal submodules in M.

Equations
Instances For
    theorem Module.le_comap_jacobson {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_5} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] (f : F) :
    theorem Module.map_jacobson_le {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_5} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] (f : F) :
    theorem Module.jacobson_eq_bot_of_injective {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_5} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] (f : F) (inj : Function.Injective f) (h : jacobson R₂ M₂ = ) :
    theorem Module.map_jacobson_of_ker_le {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_5} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] {f : F} (surj : Function.Surjective f) (le : LinearMap.ker f jacobson R M) :
    Submodule.map f (jacobson R M) = jacobson R₂ M₂
    theorem Module.comap_jacobson_of_ker_le {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_5} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] {f : F} (surj : Function.Surjective f) (le : LinearMap.ker f jacobson R M) :
    theorem Module.map_jacobson_of_bijective {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_5} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] {f : F} (hf : Function.Bijective f) :
    Submodule.map f (jacobson R M) = jacobson R₂ M₂
    theorem Module.comap_jacobson_of_bijective {R : Type u_1} {R₂ : Type u_2} {M : Type u_3} {M₂ : Type u_4} [Ring R] [Ring R₂] [AddCommGroup M] [Module R M] [AddCommGroup M₂] [Module R₂ M₂] {τ₁₂ : R →+* R₂} [RingHomSurjective τ₁₂] {F : Type u_5} [FunLike F M M₂] [SemilinearMapClass F τ₁₂ M M₂] {f : F} (hf : Function.Bijective f) :
    theorem Module.jacobson_quotient_of_le {R : Type u_1} {M : Type u_3} [Ring R] [AddCommGroup M] [Module R M] {N : Submodule R M} (le : N jacobson R M) :
    theorem Module.jacobson_le_of_eq_bot {R : Type u_1} {M : Type u_3} [Ring R] [AddCommGroup M] [Module R M] {N : Submodule R M} (h : jacobson R (M N) = ) :
    @[simp]
    theorem Module.jacobson_quotient_jacobson (R : Type u_1) (M : Type u_3) [Ring R] [AddCommGroup M] [Module R M] :
    theorem Module.jacobson_lt_top (R : Type u_1) (M : Type u_3) [Ring R] [AddCommGroup M] [Module R M] [Nontrivial M] [IsCoatomic (Submodule R M)] :
    theorem Module.jacobson_pi_le (R : Type u_1) [Ring R] {ι : Type u_7} (M : ιType u_6) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] :
    jacobson R ((i : ι) → M i) Submodule.pi Set.univ fun (x : ι) => jacobson R (M x)
    theorem Module.jacobson_pi_eq_bot (R : Type u_1) [Ring R] {ι : Type u_7} (M : ιType u_6) [(i : ι) → AddCommGroup (M i)] [(i : ι) → Module R (M i)] (h : ∀ (i : ι), jacobson R (M i) = ) :
    jacobson R ((i : ι) → M i) =

    A product of modules with trivial Jacobson radical (e.g. simple modules) also has trivial Jacobson radical.

    @[reducible, inline]
    abbrev Ring.jacobson (R : Type u_1) [Ring R] :

    The Jacobson radical of a ring R is the Jacobson radical of R as an R-module.

    Equations
    Instances For
      theorem Ring.le_comap_jacobson {R : Type u_1} {R₂ : Type u_2} [Ring R] [Ring R₂] (f : R →+* R₂) [RingHomSurjective f] :
      theorem Ring.map_jacobson_le {R : Type u_1} {R₂ : Type u_2} [Ring R] [Ring R₂] (f : R →+* R₂) [RingHomSurjective f] :
      theorem Ring.map_jacobson_of_ker_le {R : Type u_1} {R₂ : Type u_2} [Ring R] [Ring R₂] {f : R →+* R₂} [RingHomSurjective f] (le : RingHom.ker f jacobson R) :
      theorem Ring.coe_jacobson_quotient {R : Type u_1} [Ring R] (I : Ideal R) [I.IsTwoSided] :
      (jacobson (R I)) = (Module.jacobson R (R I))
      theorem Ring.jacobson_le_of_eq_bot {R : Type u_1} [Ring R] {I : Ideal R} [I.IsTwoSided] (h : jacobson (R I) = ) :
      theorem Submodule.FG.jacobson_smul_lt {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {N : Submodule R M} (ne_bot : N ) (fg : N.FG) :
      theorem Submodule.FG.eq_bot_of_le_jacobson_smul {R : Type u_1} [Ring R] {M : Type u_3} [AddCommGroup M] [Module R M] {N : Submodule R M} (fg : N.FG) (le : N Ring.jacobson R N) :
      N =

      A form of Nakayama's lemma for modules over noncommutative rings.