Documentation

Mathlib.RingTheory.Finiteness.Basic

Basic results on finitely generated (sub)modules #

This file contains the basic results on Submodule.FG and Module.Finite that do not need heavy further imports.

theorem Submodule.fg_bot {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] :
.FG
theorem Submodule.fg_span {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {s : Set M} (hs : s.Finite) :
theorem Submodule.fg_span_singleton {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] (x : M) :
(Submodule.span R {x}).FG
theorem Submodule.FG.sup {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {N₁ N₂ : Submodule R M} (hN₁ : N₁.FG) (hN₂ : N₂.FG) :
(N₁ N₂).FG
theorem Submodule.fg_finset_sup {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_3} (s : Finset ι) (N : ιSubmodule R M) (h : is, (N i).FG) :
(s.sup N).FG
theorem Submodule.fg_biSup {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Type u_3} (s : Finset ι) (N : ιSubmodule R M) (h : is, (N i).FG) :
(⨆ is, N i).FG
theorem Submodule.fg_iSup {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {ι : Sort u_3} [Finite ι] (N : ιSubmodule R M) (h : ∀ (i : ι), (N i).FG) :
(iSup N).FG
theorem Submodule.fg_pi {R : Type u_1} [Semiring R] {ι : Type u_4} {M : ιType u_5} [Finite ι] [(i : ι) → AddCommMonoid (M i)] [(i : ι) → Module R (M i)] {p : (i : ι) → Submodule R (M i)} (hsb : ∀ (i : ι), (p i).FG) :
(Submodule.pi Set.univ p).FG
theorem Submodule.FG.map {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {P : Type u_3} [AddCommMonoid P] [Module R P] (f : M →ₗ[R] P) {N : Submodule R M} (hs : N.FG) :
(Submodule.map f N).FG
theorem Submodule.fg_of_fg_map_injective {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {P : Type u_3} [AddCommMonoid P] [Module R P] (f : M →ₗ[R] P) (hf : Function.Injective f) {N : Submodule R M} (hfn : (Submodule.map f N).FG) :
N.FG
theorem Submodule.fg_of_fg_map {R : Type u_4} {M : Type u_5} {P : Type u_6} [Ring R] [AddCommGroup M] [Module R M] [AddCommGroup P] [Module R P] (f : M →ₗ[R] P) (hf : LinearMap.ker f = ) {N : Submodule R M} (hfn : (Submodule.map f N).FG) :
N.FG
theorem Submodule.fg_top {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] (N : Submodule R M) :
.FG N.FG
theorem Submodule.fg_of_linearEquiv {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {P : Type u_3} [AddCommMonoid P] [Module R P] (e : M ≃ₗ[R] P) (h : .FG) :
.FG
theorem Submodule.fg_induction (R : Type u_4) (M : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] (P : Submodule R MProp) (h₁ : ∀ (x : M), P (Submodule.span R {x})) (h₂ : ∀ (M₁ M₂ : Submodule R M), P M₁P M₂P (M₁ M₂)) (N : Submodule R M) (hN : N.FG) :
P N
theorem Submodule.fg_restrictScalars {R : Type u_4} {S : Type u_5} {M : Type u_6} [CommSemiring R] [Semiring S] [Algebra R S] [AddCommGroup M] [Module S M] [Module R M] [IsScalarTower R S M] (N : Submodule S M) (hfin : N.FG) (h : Function.Surjective (algebraMap R S)) :
theorem Submodule.FG.stabilizes_of_iSup_eq {R : Type u_1} {M : Type u_2} [Semiring R] [AddCommMonoid M] [Module R M] {M' : Submodule R M} (hM' : M'.FG) (N : →o Submodule R M) (H : iSup N = M') :
∃ (n : ), M' = N n

Finitely generated submodules are precisely compact elements in the submodule lattice.

@[instance 100]
instance Module.Finite.of_finite {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] [Finite M] :
Equations
  • =
theorem Module.Finite.of_surjective {R : Type u_1} {M : Type u_4} {N : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [hM : Module.Finite R M] (f : M →ₗ[R] N) (hf : Function.Surjective f) :
instance Module.Finite.quotient (R : Type u_6) {A : Type u_7} {M : Type u_8} [Semiring R] [AddCommGroup M] [Ring A] [Module A M] [Module R M] [SMul R A] [IsScalarTower R A M] [Module.Finite R M] (N : Submodule A M) :
Equations
  • =
instance Module.Finite.range {R : Type u_1} {M : Type u_4} {N : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] {F : Type u_6} [FunLike F M N] [SemilinearMapClass F (RingHom.id R) M N] [Module.Finite R M] (f : F) :

The range of a linear map from a finite module is finite.

Equations
  • =
instance Module.Finite.map {R : Type u_1} {M : Type u_4} {N : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (p : Submodule R M) [Module.Finite R p] (f : M →ₗ[R] N) :

Pushforwards of finite submodules are finite.

Equations
  • =
instance Module.Finite.pi {R : Type u_1} [Semiring R] {ι : Type u_6} {M : ιType u_7} [Finite ι] [(i : ι) → AddCommMonoid (M i)] [(i : ι) → Module R (M i)] [h : ∀ (i : ι), Module.Finite R (M i)] :
Module.Finite R ((i : ι) → M i)
Equations
  • =
instance Module.Finite.self (R : Type u_1) [Semiring R] :
Equations
  • =
theorem Module.Finite.of_restrictScalars_finite (R : Type u_6) (A : Type u_7) (M : Type u_8) [CommSemiring R] [Semiring A] [AddCommMonoid M] [Module R M] [Module A M] [Algebra R A] [IsScalarTower R A M] [hM : Module.Finite R M] :
theorem Module.Finite.equiv {R : Type u_1} {M : Type u_4} {N : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] [Module.Finite R M] (e : M ≃ₗ[R] N) :
theorem Module.Finite.equiv_iff {R : Type u_1} {M : Type u_4} {N : Type u_5} [Semiring R] [AddCommMonoid M] [Module R M] [AddCommMonoid N] [Module R N] (e : M ≃ₗ[R] N) :
instance Module.Finite.ulift {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] [Module.Finite R M] :
Equations
  • =
theorem Module.Finite.iff_fg {R : Type u_1} {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {N : Submodule R M} :
Module.Finite R N N.FG
instance Module.Finite.bot (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] :
Equations
  • =
instance Module.Finite.top (R : Type u_1) (M : Type u_4) [Semiring R] [AddCommMonoid M] [Module R M] [Module.Finite R M] :
Equations
  • =
theorem Module.Finite.span_of_finite (R : Type u_1) {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] {A : Set M} (hA : A.Finite) :

The submodule generated by a finite set is R-finite.

instance Module.Finite.span_singleton (R : Type u_1) {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (x : M) :

The submodule generated by a single element is R-finite.

Equations
  • =
instance Module.Finite.span_finset (R : Type u_1) {M : Type u_4} [Semiring R] [AddCommMonoid M] [Module R M] (s : Finset M) :

The submodule generated by a finset is R-finite.

Equations
  • =
theorem Module.Finite.trans {R : Type u_6} (A : Type u_7) (M : Type u_8) [Semiring R] [Semiring A] [Module R A] [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower R A M] [Module.Finite R A] [Module.Finite A M] :
theorem Module.Finite.of_equiv_equiv {A₁ : Type u_6} {B₁ : Type u_7} {A₂ : Type u_8} {B₂ : Type u_9} [CommRing A₁] [CommRing B₁] [CommRing A₂] [CommRing B₂] [Algebra A₁ B₁] [Algebra A₂ B₂] (e₁ : A₁ ≃+* A₂) (e₂ : B₁ ≃+* B₂) (he : (algebraMap A₂ B₂).comp e₁ = (↑e₂).comp (algebraMap A₁ B₁)) [Module.Finite A₁ B₁] :
Module.Finite A₂ B₂
instance Submodule.finite_sup {R : Type u_1} {V : Type u_2} [Ring R] [AddCommGroup V] [Module R V] (S₁ S₂ : Submodule R V) [h₁ : Module.Finite R S₁] [h₂ : Module.Finite R S₂] :
Module.Finite R (S₁ S₂)

The sup of two fg submodules is finite. Also see Submodule.FG.sup.

Equations
  • =
instance Submodule.finite_finset_sup {R : Type u_2} {V : Type u_3} [Ring R] [AddCommGroup V] [Module R V] {ι : Type u_1} (s : Finset ι) (S : ιSubmodule R V) [∀ (i : ι), Module.Finite R (S i)] :
Module.Finite R (s.sup S)

The submodule generated by a finite supremum of finite dimensional submodules is finite-dimensional.

Note that strictly this only needs ∀ i ∈ s, FiniteDimensional K (S i), but that doesn't work well with typeclass search.

Equations
  • =
theorem RingHom.Finite.id (A : Type u_1) [CommRing A] :
(RingHom.id A).Finite
theorem RingHom.Finite.of_surjective {A : Type u_1} {B : Type u_2} [CommRing A] [CommRing B] (f : A →+* B) (hf : Function.Surjective f) :
f.Finite
theorem RingHom.Finite.comp {A : Type u_1} {B : Type u_2} {C : Type u_3} [CommRing A] [CommRing B] [CommRing C] {g : B →+* C} {f : A →+* B} (hg : g.Finite) (hf : f.Finite) :
(g.comp f).Finite
theorem RingHom.Finite.of_comp_finite {A : Type u_1} {B : Type u_2} {C : Type u_3} [CommRing A] [CommRing B] [CommRing C] {f : A →+* B} {g : B →+* C} (h : (g.comp f).Finite) :
g.Finite
theorem AlgHom.Finite.id (R : Type u_1) (A : Type u_2) [CommRing R] [CommRing A] [Algebra R A] :
(AlgHom.id R A).Finite
theorem AlgHom.Finite.comp {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommRing R] [CommRing A] [CommRing B] [CommRing C] [Algebra R A] [Algebra R B] [Algebra R C] {g : B →ₐ[R] C} {f : A →ₐ[R] B} (hg : g.Finite) (hf : f.Finite) :
(g.comp f).Finite
theorem AlgHom.Finite.of_surjective {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommRing R] [CommRing A] [CommRing B] [Algebra R A] [Algebra R B] (f : A →ₐ[R] B) (hf : Function.Surjective f) :
f.Finite
theorem AlgHom.Finite.of_comp_finite {R : Type u_1} {A : Type u_2} {B : Type u_3} {C : Type u_4} [CommRing R] [CommRing A] [CommRing B] [CommRing C] [Algebra R A] [Algebra R B] [Algebra R C] {f : A →ₐ[R] B} {g : B →ₐ[R] C} (h : (g.comp f).Finite) :
g.Finite