Documentation

Mathlib.RingTheory.Ideal.Quotient.Defs

Ideal quotients #

This file defines ideal quotients as a special case of submodule quotients and proves some basic results about these quotients.

See Algebra.RingQuot for quotients of non-commutative rings.

Main definitions #

@[reducible, inline]

The quotient R/I of a ring R by an ideal I.

The ideal quotient of I is defined to equal the quotient of I as an R-submodule of R. This definition uses abbrev so that typeclass instances can be shared between Ideal.Quotient I and Submodule.Quotient I.

Equations
  • Ideal.instHasQuotient = Submodule.hasQuotient
instance Ideal.Quotient.one {R : Type u} [CommRing R] (I : Ideal R) :
One (R I)
Equations
def Ideal.Quotient.ringCon {R : Type u} [CommRing R] (I : Ideal R) :

On Ideals, Submodule.quotientRel is a ring congruence.

Equations
Instances For
    def Ideal.Quotient.mk {R : Type u} [CommRing R] (I : Ideal R) :
    R →+* R I

    The ring homomorphism from a ring R to a quotient ring R/I.

    Equations
    Instances For
      instance Ideal.Quotient.instCoeQuotient {R : Type u} [CommRing R] {I : Ideal R} :
      Coe R (R I)
      Equations
      theorem Ideal.Quotient.ringHom_ext {R : Type u} [CommRing R] {I : Ideal R} {S : Type v} [NonAssocSemiring S] ⦃f g : R I →+* S (h : f.comp (Ideal.Quotient.mk I) = g.comp (Ideal.Quotient.mk I)) :
      f = g

      Two RingHoms from the quotient by an ideal are equal if their compositions with Ideal.Quotient.mk' are equal.

      See note [partially-applied ext lemmas].

      instance Ideal.Quotient.inhabited {R : Type u} [CommRing R] {I : Ideal R} :
      Equations
      theorem Ideal.Quotient.eq {R : Type u} [CommRing R] {I : Ideal R} {x y : R} :
      @[simp]
      theorem Ideal.Quotient.eq_zero_iff_mem {R : Type u} [CommRing R] {a : R} {I : Ideal R} :
      theorem Ideal.Quotient.quotient_ring_saturate {R : Type u} [CommRing R] (I : Ideal R) (s : Set R) :
      (Ideal.Quotient.mk I) ⁻¹' ((Ideal.Quotient.mk I) '' s) = ⋃ (x : I), (fun (y : R) => x + y) '' s

      If I is an ideal of a commutative ring R, if q : R → R/I is the quotient map, and if s ⊆ R is a subset, then q⁻¹(q(s)) = ⋃ᵢ(i + s), the union running over all i ∈ I.

      def Ideal.Quotient.lift {R : Type u} [CommRing R] {S : Type v} [Semiring S] (I : Ideal R) (f : R →+* S) (H : aI, f a = 0) :
      R I →+* S

      Given a ring homomorphism f : R →+* S sending all elements of an ideal to zero, lift it to the quotient by this ideal.

      Equations
      Instances For
        @[simp]
        theorem Ideal.Quotient.lift_mk {R : Type u} [CommRing R] {a : R} {S : Type v} [Semiring S] (I : Ideal R) (f : R →+* S) (H : aI, f a = 0) :
        theorem Ideal.Quotient.lift_surjective_of_surjective {R : Type u} [CommRing R] {S : Type v} [Semiring S] (I : Ideal R) {f : R →+* S} (H : aI, f a = 0) (hf : Function.Surjective f) :
        def Ideal.Quotient.factor {R : Type u} [CommRing R] (S T : Ideal R) (H : S T) :
        R S →+* R T

        The ring homomorphism from the quotient by a smaller ideal to the quotient by a larger ideal.

        This is the Ideal.Quotient version of Quot.Factor

        Equations
        Instances For
          @[simp]
          theorem Ideal.Quotient.factor_mk {R : Type u} [CommRing R] (S T : Ideal R) (H : S T) (x : R) :
          @[simp]
          def Ideal.quotEquivOfEq {R : Type u_1} [CommRing R] {I J : Ideal R} (h : I = J) :
          R I ≃+* R J

          Quotienting by equal ideals gives equivalent rings.

          See also Submodule.quotEquivOfEq and Ideal.quotientEquivAlgOfEq.

          Equations
          Instances For
            @[simp]
            theorem Ideal.quotEquivOfEq_mk {R : Type u_1} [CommRing R] {I J : Ideal R} (h : I = J) (x : R) :
            @[simp]
            theorem Ideal.quotEquivOfEq_symm {R : Type u_1} [CommRing R] {I J : Ideal R} (h : I = J) :