Documentation

Mathlib.RingTheory.Ideal.Quotient.PowTransition

The quotient map from R ⧸ I ^ m to R ⧸ I ^ n where m ≥ n #

In this file we define the canonical quotient linear map from M ⧸ I ^ m • ⊤ to M ⧸ I ^ n • ⊤ and canonical quotient ring map from R ⧸ I ^ m to R ⧸ I ^ n. These definitions will be used in theorems related to IsAdicComplete to find a lift element from compatible sequences in the quotients. We also include results about the relation between quotients of submodules and quotients of ideals here.

Main definitions #

Main results #

theorem Ideal.Quotient.factor_ker {R : Type u_1} [Ring R] {I J : Ideal R} (H : I J) [I.IsTwoSided] [J.IsTwoSided] :
@[simp]
theorem Submodule.mapQ_eq_factor {R : Type u_1} [Ring R] {I J : Ideal R} (h : I J) (x : R I) :
(mapQ I J LinearMap.id h) x = (factor h) x
theorem Submodule.pow_smul_top_le {R : Type u_1} [Ring R] (I : Ideal R) (M : Type u_2) [AddCommGroup M] [Module R M] {m n : } (h : m n) :
I ^ n I ^ m
@[reducible, inline]
abbrev Submodule.factorPow {R : Type u_1} [Ring R] (I : Ideal R) (M : Type u_2) [AddCommGroup M] [Module R M] {m n : } (le : m n) :
M I ^ n →ₗ[R] M I ^ m

The linear map from M ⧸ I ^ m • ⊤ to M ⧸ I ^ n • ⊤ induced by the natural inclusion I ^ n • ⊤ → I ^ m • ⊤.

To future contributors: Before adding lemmas related to Submodule.factorPow, please check whether it can be generalized to Submodule.factor and whether the corresponding (more general) lemma for Submodule.factor already exists.

Equations
Instances For
    @[reducible, inline]
    abbrev Submodule.factorPowSucc {R : Type u_1} [Ring R] (I : Ideal R) (M : Type u_2) [AddCommGroup M] [Module R M] (m : ) :
    M I ^ (m + 1) →ₗ[R] M I ^ m

    factorPow for n = m + 1

    Equations
    Instances For
      @[reducible, inline]
      abbrev Ideal.Quotient.factorPow {R : Type u_1} [Ring R] (I : Ideal R) [I.IsTwoSided] {m n : } (le : n m) :
      R I ^ m →+* R I ^ n

      The ring homomorphism from R ⧸ I ^ m to R ⧸ I ^ n induced by the natural inclusion I ^ n → I ^ m.

      To future contributors: Before adding lemmas related to Ideal.factorPow, please check whether it can be generalized to Ideal.factor and whether the corresponding (more general) lemma for Ideal.factor already exists.

      Equations
      Instances For
        @[reducible, inline]
        abbrev Ideal.Quotient.factorPowSucc {R : Type u_1} [Ring R] (I : Ideal R) [I.IsTwoSided] (n : ) :
        R I ^ (n + 1) →+* R I ^ n

        factorPow for m = n + 1

        Equations
        Instances For