The equivalence of categories of sheaves of a dense subsite #
CategoryTheory.Functor.IsDenseSubsite.sheafEquiv
: IfG : C ⥤ D
exhibits(C, J)
as a dense subsite of(D, K)
, it induces an equivalence of category of sheaves valued in a category with suitable limits.
References #
- [Joh02]: Sketches of an Elephant, ℱ. T. Johnstone: C2.2.
- https://ncatlab.org/nlab/show/dense+sub-site
- https://ncatlab.org/nlab/show/comparison+lemma
theorem
CategoryTheory.Functor.IsDenseSubsite.isIso_ranCounit_app_of_isDenseSubsite
{C : Type u_1}
{D : Type u_2}
[Category.{u_3, u_1} C]
[Category.{u_4, u_2} D]
(G : Functor C D)
(J : GrothendieckTopology C)
(K : GrothendieckTopology D)
{A : Type w}
[Category.{w', w} A]
[∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A]
[IsDenseSubsite J K G]
(Y : Sheaf J A)
(U : C)
(X : A)
:
instance
CategoryTheory.Functor.IsDenseSubsite.instIsIsoSheafAppCounitSheafAdjunctionCocontinuous
{C : Type u_1}
{D : Type u_2}
[Category.{u_3, u_1} C]
[Category.{u_4, u_2} D]
(G : Functor C D)
(J : GrothendieckTopology C)
(K : GrothendieckTopology D)
{A : Type w}
[Category.{w', w} A]
[∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A]
[IsDenseSubsite J K G]
(Y : Sheaf J A)
:
IsIso ((G.sheafAdjunctionCocontinuous A J K).counit.app Y)
noncomputable def
CategoryTheory.Functor.IsDenseSubsite.sheafEquiv
{C : Type u_1}
{D : Type u_2}
[Category.{u_3, u_1} C]
[Category.{u_4, u_2} D]
(G : Functor C D)
(J : GrothendieckTopology C)
(K : GrothendieckTopology D)
(A : Type w)
[Category.{w', w} A]
[∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A]
[IsDenseSubsite J K G]
:
If G : C ⥤ D
exhibits (C, J)
as a dense subsite of (D, K)
,
it induces an equivalence of category of sheaves valued in a category with suitable limits.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Functor.IsDenseSubsite.sheafEquiv_functor
{C : Type u_1}
{D : Type u_2}
[Category.{u_3, u_1} C]
[Category.{u_4, u_2} D]
(G : Functor C D)
(J : GrothendieckTopology C)
(K : GrothendieckTopology D)
(A : Type w)
[Category.{w', w} A]
[∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A]
[IsDenseSubsite J K G]
:
@[simp]
theorem
CategoryTheory.Functor.IsDenseSubsite.sheafEquiv_inverse
{C : Type u_1}
{D : Type u_2}
[Category.{u_3, u_1} C]
[Category.{u_4, u_2} D]
(G : Functor C D)
(J : GrothendieckTopology C)
(K : GrothendieckTopology D)
(A : Type w)
[Category.{w', w} A]
[∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A]
[IsDenseSubsite J K G]
:
instance
CategoryTheory.Functor.IsDenseSubsite.instIsEquivalenceSheafSheafPushforwardContinuous
{C : Type u_1}
{D : Type u_2}
[Category.{u_4, u_1} C]
[Category.{u_3, u_2} D]
(G : Functor C D)
(J : GrothendieckTopology C)
(K : GrothendieckTopology D)
(A : Type w)
[Category.{w', w} A]
[∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A]
[IsDenseSubsite J K G]
:
(G.sheafPushforwardContinuous A J K).IsEquivalence
@[reducible, inline]
noncomputable abbrev
CategoryTheory.Functor.IsDenseSubsite.sheafEquivSheafificationCompatibility
{C : Type u_1}
{D : Type u_2}
[Category.{u_3, u_1} C]
[Category.{u_4, u_2} D]
(G : Functor C D)
(J : GrothendieckTopology C)
(K : GrothendieckTopology D)
(A : Type w)
[Category.{w', w} A]
[∀ (X : Dᵒᵖ), Limits.HasLimitsOfShape (StructuredArrow X G.op) A]
[IsDenseSubsite J K G]
[HasWeakSheafify J A]
[HasWeakSheafify K A]
:
((whiskeringLeft Cᵒᵖ Dᵒᵖ A).obj G.op).comp (presheafToSheaf J A) ≅ (presheafToSheaf K A).comp (sheafEquiv G J K A).inverse
The natural isomorphism exhibiting the compatibility of
IsDenseSubsite.sheafEquiv
with sheafification.