Documentation

Mathlib.Topology.UniformSpace.Ultra.Basic

Ultrametric (nonarchimedean) uniform spaces #

Ultrametric (nonarchimedean) uniform spaces are ones that generalize ultrametric spaces by having a uniformity based on equivalence relations.

Main definitions #

In this file we define IsUltraUniformity, a Prop mixin typeclass.

Main results #

Implementation notes #

As in the Mathlib/Topology/UniformSpace/Defs.lean file, we do not reuse Mathlib/Data/Rel.lean but rather extend the relation properties as needed.

TODOs #

References #

def IsTransitiveRel {X : Type u_1} (V : Set (X × X)) :

The relation is transitive.

Equations
Instances For
    theorem IsTransitiveRel.comp_subset_self {X : Type u_1} {s : Set (X × X)} (h : IsTransitiveRel s) :
    compRel s s s
    theorem IsTransitiveRel.inter {X : Type u_1} {s t : Set (X × X)} (hs : IsTransitiveRel s) (ht : IsTransitiveRel t) :
    theorem IsTransitiveRel.iInter {X : Type u_1} {ι : Type u_2} {U : ιSet (X × X)} (hU : ∀ (i : ι), IsTransitiveRel (U i)) :
    IsTransitiveRel (⋂ (i : ι), U i)
    theorem IsTransitiveRel.sInter {X : Type u_1} {s : Set (Set (X × X))} (h : is, IsTransitiveRel i) :
    theorem IsTransitiveRel.preimage_prodMap {X : Type u_1} {Y : Type u_2} {t : Set (Y × Y)} (ht : IsTransitiveRel t) (f : XY) :
    theorem IsTransitiveRel.comp_eq_of_idRel_subset {X : Type u_1} {s : Set (X × X)} (h : IsTransitiveRel s) (h' : idRel s) :
    compRel s s = s
    theorem UniformSpace.ball_eq_of_mem_of_isSymmetricRel_of_isTransitiveRel {X : Type u_1} {V : Set (X × X)} (h_symm : IsSymmetricRel V) (h_trans : IsTransitiveRel V) {x y : X} (hy : y ball x V) :
    ball x V = ball y V

    A uniform space is ultrametric if the uniformity 𝓤 X has a basis of equivalence relations.

    Instances
      theorem IsUltraUniformity.mk_of_hasBasis {X : Type u_1} [UniformSpace X] {ι : Type u_2} {p : ιProp} {s : ιSet (X × X)} (h_basis : (uniformity X).HasBasis p s) (h_symm : ∀ (i : ι), p iIsSymmetricRel (s i)) (h_trans : ∀ (i : ι), p iIsTransitiveRel (s i)) :
      theorem UniformSpace.nhds_basis_clopens {X : Type u_1} [UniformSpace X] [IsUltraUniformity X] (x : X) :
      (nhds x).HasBasis (fun (s : Set X) => x s IsClopen s) id

      A uniform space with a nonarchimedean uniformity is zero-dimensional.