Documentation

Mathlib.CategoryTheory.Extensive

Extensive categories #

Main definitions #

Main Results #

TODO #

Show that the following are finitary extensive:

References #

A category has pullback of inclusions if it has all pullbacks along coproduct injections.

Instances For

    A functor preserves pullback of inclusions if it preserves all pullbacks along coproduct injections.

    Instances For

      A category is (finitary) pre-extensive if it has finite coproducts, and binary coproducts are universal.

      Instances For

        A category is (finitary) extensive if it has finite coproducts, and binary coproducts are van Kampen.

        Instances For
          theorem CategoryTheory.finitaryExtensive_of_reflective {C : Type u} [Category C] {D : Type u''} [Category D] [Limits.HasFiniteCoproducts D] [HasPullbacksOfInclusions D] [FinitaryExtensive C] {Gl : Functor C D} {Gr : Functor D C} (adj : Adjunction Gl Gr) [Gr.Full] [Gr.Faithful] [∀ (X : D) (Y : C) (f : Quiver.Hom X (Gl.obj Y)), Limits.HasPullback (Gr.map f) (adj.unit.app Y)] [∀ (X : D) (Y : C) (f : Quiver.Hom X (Gl.obj Y)), Limits.PreservesLimit (Limits.cospan (Gr.map f) (adj.unit.app Y)) Gl] [PreservesPullbacksOfInclusions Gl] :
          theorem CategoryTheory.FinitaryExtensive.mono_ι {C : Type u} [Category C] [FinitaryExtensive C] {ι : Type u_1} [Finite ι] {F : Functor (Discrete ι) C} {c : Limits.Cocone F} (hc : Limits.IsColimit c) (i : Discrete ι) :
          Mono (c.ι.app i)
          theorem CategoryTheory.instMonoι {C : Type u} [Category C] [FinitaryExtensive C] {ι : Type u_1} [Finite ι] (X : ιC) (i : ι) :
          theorem CategoryTheory.FinitaryPreExtensive.hasPullbacks_of_inclusions {C : Type u} [Category C] [FinitaryPreExtensive C] {X Z : C} {α : Type u_1} (f : Quiver.Hom X Z) {Y : αC} (i : (a : α) → Quiver.Hom (Y a) Z) [Finite α] [hi : IsIso (Limits.Sigma.desc i)] (a : α) :
          theorem CategoryTheory.FinitaryPreExtensive.sigma_desc_iso {C : Type u} [Category C] [FinitaryPreExtensive C] {α : Type} [Finite α] {X : C} {Z : αC} (π : (a : α) → Quiver.Hom (Z a) X) {Y : C} (f : Quiver.Hom Y X) ( : IsIso (Limits.Sigma.desc π)) :
          IsIso (Limits.Sigma.desc fun (x : α) => Limits.pullback.fst f (π x))