Documentation

Mathlib.CategoryTheory.Extensive

Extensive categories #

Main definitions #

Main Results #

TODO #

Show that the following are finitary extensive:

References #

A category has pullback of inclusions if it has all pullbacks along coproduct injections.

Instances

    A functor preserves pullback of inclusions if it preserves all pullbacks along coproduct injections.

    Instances

      A category is (finitary) pre-extensive if it has finite coproducts, and binary coproducts are universal.

      Instances

        A category is (finitary) extensive if it has finite coproducts, and binary coproducts are van Kampen.

        Instances

          (Implementation) An auxiliary lemma for the proof that TopCat is finitary extensive.

          Equations
          Instances For
            theorem CategoryTheory.finitaryExtensive_of_reflective {C : Type u} [Category.{v, u} C] {D : Type u''} [Category.{v'', u''} D] [Limits.HasFiniteCoproducts D] [HasPullbacksOfInclusions D] [FinitaryExtensive C] {Gl : Functor C D} {Gr : Functor D C} (adj : Gl Gr) [Gr.Full] [Gr.Faithful] [∀ (X : D) (Y : C) (f : X Gl.obj Y), Limits.HasPullback (Gr.map f) (adj.unit.app Y)] [∀ (X : D) (Y : C) (f : X Gl.obj Y), Limits.PreservesLimit (Limits.cospan (Gr.map f) (adj.unit.app Y)) Gl] [PreservesPullbacksOfInclusions Gl] :
            instance CategoryTheory.instMonoι {C : Type u} [Category.{v, u} C] [FinitaryExtensive C] {ι : Type u_1} [Finite ι] (X : ιC) (i : ι) :
            instance CategoryTheory.FinitaryPreExtensive.hasPullbacks_of_inclusions {C : Type u} [Category.{v, u} C] [FinitaryPreExtensive C] {X Z : C} {α : Type u_1} (f : X Z) {Y : αC} (i : (a : α) → Y a Z) [Finite α] [hi : IsIso (Limits.Sigma.desc i)] (a : α) :
            theorem CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_fst {C : Type u} [Category.{v, u} C] [FinitaryPreExtensive C] {α : Type} [Finite α] {X : C} {Z : αC} (π : (a : α) → Z a X) {Y : C} (f : Y X) ( : IsIso (Limits.Sigma.desc π)) :
            IsIso (Limits.Sigma.desc fun (x : α) => Limits.pullback.fst f (π x))
            @[deprecated CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_fst (since := "2025-06-20")]
            theorem CategoryTheory.FinitaryPreExtensive.sigma_desc_iso {C : Type u} [Category.{v, u} C] [FinitaryPreExtensive C] {α : Type} [Finite α] {X : C} {Z : αC} (π : (a : α) → Z a X) {Y : C} (f : Y X) ( : IsIso (Limits.Sigma.desc π)) :
            IsIso (Limits.Sigma.desc fun (x : α) => Limits.pullback.fst f (π x))

            Alias of CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_fst.

            instance CategoryTheory.FinitaryPreExtensive.isIso_sigmaDesc_map {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [FinitaryPreExtensive C] {ι : Type u_1} {ι' : Type u_2} [Finite ι] [Finite ι'] {S : C} {X : ιC} {Y : ι'C} (f : (i : ι) → X i S) (g : (i : ι') → Y i S) :

            If C has pullbacks and is finitary (pre-)extensive, pullbacks distribute over finite coproducts, i.e., ∐ (Xᵢ ×[S] Xⱼ) ≅ (∐ Xᵢ) ×[S] (∐ Xⱼ). For an IsPullback version, see FinitaryPreExtensive.isPullback_sigmaDesc.

            theorem CategoryTheory.FinitaryPreExtensive.isPullback_sigmaDesc {C : Type u} [Category.{v, u} C] [Limits.HasPullbacks C] [FinitaryPreExtensive C] {ι : Type u_1} {ι' : Type u_2} [Finite ι] [Finite ι'] {S : C} {X : ιC} {Y : ι'C} (f : (i : ι) → X i S) (g : (i : ι') → Y i S) :

            If C has pullbacks and is finitary (pre-)extensive, pullbacks distribute over finite coproducts, i.e., ∐ (Xᵢ ×[S] Xⱼ) ≅ (∐ Xᵢ) ×[S] (∐ Xⱼ). For a variant, see FinitaryPreExtensive.isIso_sigmaDesc_map.