Products and coproducts in the category of topological spaces #
@[simp]
theorem
TopCat.piFan_pt
{ι : Type v}
(α : ι → TopCatMax)
:
(TopCat.piFan α).pt = TopCat.of ((i : ι) → ↑(α i))
@[simp]
theorem
TopCat.piFan_π_app
{ι : Type v}
(α : ι → TopCatMax)
(X : CategoryTheory.Discrete ι)
:
(TopCat.piFan α).π.app X = TopCat.piπ α X.as
The explicit fan of a family of topological spaces given by the pi type.
Instances For
The constructed fan is indeed a limit
Instances For
@[simp]
theorem
TopCat.piIsoPi_inv_π_assoc
{ι : Type v}
(α : ι → TopCatMax)
(i : ι)
{Z : TopCatMax}
(h : α i ⟶ Z)
:
@[simp]
theorem
TopCat.piIsoPi_inv_π
{ι : Type v}
(α : ι → TopCatMax)
(i : ι)
:
CategoryTheory.CategoryStruct.comp (TopCat.piIsoPi α).inv (CategoryTheory.Limits.Pi.π α i) = TopCat.piπ α i
@[simp]
theorem
TopCat.piIsoPi_inv_π_apply
{ι : Type v}
(α : ι → TopCatMax)
(i : ι)
(x : (i : ι) → ↑(α i))
:
↑(CategoryTheory.Limits.Pi.π α i) (↑(TopCat.piIsoPi α).inv x) = x i
@[simp]
theorem
TopCat.piIsoPi_hom_apply
{ι : Type v}
(α : ι → TopCatMax)
(i : ι)
(x : ↑(∏ α))
:
↑(TopCat.piIsoPi α).hom x i = ↑(CategoryTheory.Limits.Pi.π α i) x
@[simp]
theorem
TopCat.sigmaCofan_pt
{ι : Type v}
(α : ι → TopCatMax)
:
(TopCat.sigmaCofan α).pt = TopCat.of ((i : ι) × ↑(α i))
@[simp]
theorem
TopCat.sigmaCofan_ι_app
{ι : Type v}
(α : ι → TopCatMax)
(X : CategoryTheory.Discrete ι)
:
(TopCat.sigmaCofan α).ι.app X = TopCat.sigmaι α X.as
The explicit cofan of a family of topological spaces given by the sigma type.
Instances For
The constructed cofan is indeed a colimit
Instances For
@[simp]
@[simp]
theorem
TopCat.sigmaIsoSigma_hom_ι_apply
{ι : Type v}
(α : ι → TopCatMax)
(i : ι)
(x : ↑(α i))
:
↑(TopCat.sigmaIsoSigma α).hom (↑(CategoryTheory.Limits.Sigma.ι α i) x) = { fst := i, snd := x }
@[simp]
theorem
TopCat.sigmaIsoSigma_inv_apply
{ι : Type v}
(α : ι → TopCatMax)
(i : ι)
(x : ↑(α i))
:
↑(TopCat.sigmaIsoSigma α).inv { fst := i, snd := x } = ↑(CategoryTheory.Limits.Sigma.ι α i) x
theorem
TopCat.induced_of_isLimit
{J : Type v}
[CategoryTheory.SmallCategory J]
{F : CategoryTheory.Functor J TopCatMax}
(C : CategoryTheory.Limits.Cone F)
(hC : CategoryTheory.Limits.IsLimit C)
:
C.pt.str = ⨅ (j : J), TopologicalSpace.induced (↑(C.π.app j)) (F.obj j).str
theorem
TopCat.limit_topology
{J : Type v}
[CategoryTheory.SmallCategory J]
(F : CategoryTheory.Functor J TopCatMax)
:
(CategoryTheory.Limits.limit F).str = ⨅ (j : J), TopologicalSpace.induced (↑(CategoryTheory.Limits.limit.π F j)) (F.obj j).str
The explicit binary cofan of X, Y
given by X × Y
.
Instances For
The constructed binary fan is indeed a limit
Instances For
@[simp]
theorem
TopCat.prodIsoProd_hom_fst_assoc
(X : TopCat)
(Y : TopCat)
{Z : TopCat}
(h : X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (TopCat.prodIsoProd X Y).hom (CategoryTheory.CategoryStruct.comp TopCat.prodFst h) = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst h
@[simp]
theorem
TopCat.prodIsoProd_hom_fst
(X : TopCat)
(Y : TopCat)
:
CategoryTheory.CategoryStruct.comp (TopCat.prodIsoProd X Y).hom TopCat.prodFst = CategoryTheory.Limits.prod.fst
@[simp]
theorem
TopCat.prodIsoProd_hom_snd_assoc
(X : TopCat)
(Y : TopCat)
{Z : TopCat}
(h : Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (TopCat.prodIsoProd X Y).hom (CategoryTheory.CategoryStruct.comp TopCat.prodSnd h) = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd h
@[simp]
theorem
TopCat.prodIsoProd_hom_snd
(X : TopCat)
(Y : TopCat)
:
CategoryTheory.CategoryStruct.comp (TopCat.prodIsoProd X Y).hom TopCat.prodSnd = CategoryTheory.Limits.prod.snd
@[simp]
theorem
TopCat.prodIsoProd_hom_apply
{X : TopCat}
{Y : TopCat}
(x : ↑(X ⨯ Y))
:
↑(TopCat.prodIsoProd X Y).hom x = (↑CategoryTheory.Limits.prod.fst x, ↑CategoryTheory.Limits.prod.snd x)
@[simp]
theorem
TopCat.prodIsoProd_inv_fst_assoc
(X : TopCat)
(Y : TopCat)
{Z : TopCat}
(h : X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (TopCat.prodIsoProd X Y).inv
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.fst h) = CategoryTheory.CategoryStruct.comp TopCat.prodFst h
theorem
TopCat.prodIsoProd_inv_fst_apply
(X : TopCat)
(Y : TopCat)
(x : (CategoryTheory.forget TopCat).obj (TopCat.of (↑X × ↑Y)))
:
↑CategoryTheory.Limits.prod.fst (↑(TopCat.prodIsoProd X Y).inv x) = ↑TopCat.prodFst x
@[simp]
theorem
TopCat.prodIsoProd_inv_fst
(X : TopCat)
(Y : TopCat)
:
CategoryTheory.CategoryStruct.comp (TopCat.prodIsoProd X Y).inv CategoryTheory.Limits.prod.fst = TopCat.prodFst
@[simp]
theorem
TopCat.prodIsoProd_inv_snd_assoc
(X : TopCat)
(Y : TopCat)
{Z : TopCat}
(h : Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (TopCat.prodIsoProd X Y).inv
(CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.prod.snd h) = CategoryTheory.CategoryStruct.comp TopCat.prodSnd h
theorem
TopCat.prodIsoProd_inv_snd_apply
(X : TopCat)
(Y : TopCat)
(x : (CategoryTheory.forget TopCat).obj (TopCat.of (↑X × ↑Y)))
:
↑CategoryTheory.Limits.prod.snd (↑(TopCat.prodIsoProd X Y).inv x) = ↑TopCat.prodSnd x
@[simp]
theorem
TopCat.prodIsoProd_inv_snd
(X : TopCat)
(Y : TopCat)
:
CategoryTheory.CategoryStruct.comp (TopCat.prodIsoProd X Y).inv CategoryTheory.Limits.prod.snd = TopCat.prodSnd
theorem
TopCat.prod_topology
{X : TopCat}
{Y : TopCat}
:
(X ⨯ Y).str = TopologicalSpace.induced (↑CategoryTheory.Limits.prod.fst) X.str ⊓ TopologicalSpace.induced (↑CategoryTheory.Limits.prod.snd) Y.str
The binary coproduct cofan in TopCat
.
Instances For
The constructed binary coproduct cofan in TopCat
is the coproduct.
Instances For
theorem
TopCat.binaryCofan_isColimit_iff
{X : TopCat}
{Y : TopCat}
(c : CategoryTheory.Limits.BinaryCofan X Y)
: