Documentation

Mathlib.ModelTheory.Fraisse

Fraïssé Classes and Fraïssé Limits #

This file pertains to the ages of countable first-order structures. The age of a structure is the class of all finitely-generated structures that embed into it.

Of particular interest are Fraïssé classes, which are exactly the ages of countable ultrahomogeneous structures. To each is associated a unique (up to nonunique isomorphism) Fraïssé limit - the countable ultrahomogeneous structure with that age.

Main Definitions #

Main Results #

Implementation Notes #

References #

TODO #

The Age of a Structure and Fraïssé Classes #

def FirstOrder.Language.age (L : FirstOrder.Language) (M : Type w) [L.Structure M] :

The age of a structure M is the class of finitely-generated structures that embed into it.

Equations
Instances For

    A class K has the hereditary property when all finitely-generated structures that embed into structures in K are also in K.

    Equations
    Instances For

      A class K has the joint embedding property when for every M, N in K, there is another structure in K into which both M and N embed.

      Equations
      Instances For

        A class K has the amalgamation property when for any pair of embeddings of a structure M in K into other structures in K, those two structures can be embedded into a fourth structure in K such that the resulting square of embeddings commutes.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          A Fraïssé class is a nonempty, essentially countable class of structures satisfying the hereditary, joint embedding, and amalgamation properties.

          Instances
            theorem FirstOrder.Language.age.is_equiv_invariant (L : FirstOrder.Language) (M : Type w) [L.Structure M] (N P : CategoryTheory.Bundled L.Structure) (h : Nonempty (L.Equiv N P)) :
            N L.age M P L.age M
            theorem FirstOrder.Language.Embedding.age_subset_age {L : FirstOrder.Language} {M : Type w} [L.Structure M] {N : Type w} [L.Structure N] (MN : L.Embedding M N) :
            L.age M L.age N
            theorem FirstOrder.Language.Equiv.age_eq_age {L : FirstOrder.Language} {M : Type w} [L.Structure M] {N : Type w} [L.Structure N] (MN : L.Equiv M N) :
            L.age M = L.age N
            theorem FirstOrder.Language.Structure.FG.mem_age_of_equiv {L : FirstOrder.Language} {M N : CategoryTheory.Bundled L.Structure} (h : FirstOrder.Language.Structure.FG L M) (MN : Nonempty (L.Equiv M N)) :
            N L.age M
            theorem FirstOrder.Language.age.nonempty {L : FirstOrder.Language} (M : Type w) [L.Structure M] :
            (L.age M).Nonempty
            theorem FirstOrder.Language.age.fg_substructure {L : FirstOrder.Language} {M : Type w} [L.Structure M] {S : L.Substructure M} (fg : S.FG) :
            { α := S, str := inferInstance } L.age M
            theorem FirstOrder.Language.age.has_representative_as_substructure {L : FirstOrder.Language} (M : Type w) [L.Structure M] (C : Quotient FirstOrder.Language.equivSetoid) :
            C Quotient.mk' '' L.age M∃ (V : { V : L.Substructure M // V.FG }), { α := V, str := inferInstance } = C

            Any class in the age of a structure has a representative which is a finitely generated substructure.

            theorem FirstOrder.Language.age.countable_quotient {L : FirstOrder.Language} (M : Type w) [L.Structure M] [h : Countable M] :
            (Quotient.mk' '' L.age M).Countable

            The age of a countable structure is essentially countable (has countably many isomorphism classes).

            theorem FirstOrder.Language.age_directLimit {L : FirstOrder.Language} {ι : Type w} [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Nonempty ι] (G : ιType (max w w')) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] :
            L.age (FirstOrder.Language.DirectLimit G f) = ⋃ (i : ι), L.age (G i)

            The age of a direct limit of structures is the union of the ages of the structures.

            theorem FirstOrder.Language.exists_cg_is_age_of {L : FirstOrder.Language} {K : Set (CategoryTheory.Bundled L.Structure)} (hn : K.Nonempty) (hc : (Quotient.mk' '' K).Countable) (fg : MK, FirstOrder.Language.Structure.FG L M) (hp : FirstOrder.Language.Hereditary K) (jep : FirstOrder.Language.JointEmbedding K) :
            ∃ (M : CategoryTheory.Bundled L.Structure), FirstOrder.Language.Structure.CG L M L.age M = K

            Sufficient conditions for a class to be the age of a countably-generated structure.

            theorem FirstOrder.Language.exists_countable_is_age_of_iff {L : FirstOrder.Language} {K : Set (CategoryTheory.Bundled L.Structure)} [Countable ((l : ) × L.Functions l)] :
            (∃ (M : CategoryTheory.Bundled L.Structure), Countable M L.age M = K) K.Nonempty (∀ (M N : CategoryTheory.Bundled L.Structure), Nonempty (L.Equiv M N)(M K N K)) (Quotient.mk' '' K).Countable (∀ MK, FirstOrder.Language.Structure.FG L M) FirstOrder.Language.Hereditary K FirstOrder.Language.JointEmbedding K

            A structure M is ultrahomogeneous if every embedding of a finitely generated substructure into M extends to an automorphism of M.

            Equations
            • L.IsUltrahomogeneous M = ∀ (S : L.Substructure M), S.FG∀ (f : L.Embedding (↥S) M), ∃ (g : L.Equiv M M), f = g.toEmbedding.comp S.subtype
            Instances For
              structure FirstOrder.Language.IsFraisseLimit {L : FirstOrder.Language} (K : Set (CategoryTheory.Bundled L.Structure)) (M : Type w) [L.Structure M] [Countable ((l : ) × L.Functions l)] [Countable M] :

              A structure M is a Fraïssé limit for a class K if it is countably generated, ultrahomogeneous, and has age K.

              • ultrahomogeneous : L.IsUltrahomogeneous M
              • age : L.age M = K
              Instances For
                theorem FirstOrder.Language.IsUltrahomogeneous.extend_embedding {L : FirstOrder.Language} {M : Type w} [L.Structure M] (M_homog : L.IsUltrahomogeneous M) {S : Type u_1} [L.Structure S] (S_FG : FirstOrder.Language.Structure.FG L S) {T : Type u_2} [L.Structure T] [h : Nonempty (L.Embedding T M)] (f : L.Embedding S M) (g : L.Embedding S T) :
                ∃ (f' : L.Embedding T M), f = f'.comp g

                Any embedding from a finitely generated S to an ultrahomogeneous structure M can be extended to an embedding from any structure with an embedding to M.

                theorem FirstOrder.Language.isUltrahomogeneous_iff_IsExtensionPair {L : FirstOrder.Language} {M : Type w} [L.Structure M] (M_CG : FirstOrder.Language.Structure.CG L M) :
                L.IsUltrahomogeneous M L.IsExtensionPair M M

                A countably generated structure is ultrahomogeneous if and only if any equivalence between finitely generated substructures can be extended to any element in the domain.

                theorem FirstOrder.Language.IsUltrahomogeneous.amalgamation_age {L : FirstOrder.Language} {M : Type w} [L.Structure M] (h : L.IsUltrahomogeneous M) :
                theorem FirstOrder.Language.IsUltrahomogeneous.age_isFraisse {L : FirstOrder.Language} {M : Type w} [L.Structure M] [Countable M] (h : L.IsUltrahomogeneous M) :

                If a class has a Fraïssé limit, it must be Fraïssé.

                theorem FirstOrder.Language.IsFraisseLimit.isExtensionPair {L : FirstOrder.Language} {K : Set (CategoryTheory.Bundled L.Structure)} {M : Type w} [L.Structure M] {N : Type w} [L.Structure N] [Countable ((l : ) × L.Functions l)] [Countable M] [Countable N] (hM : FirstOrder.Language.IsFraisseLimit K M) (hN : FirstOrder.Language.IsFraisseLimit K N) :
                L.IsExtensionPair M N
                theorem FirstOrder.Language.IsFraisseLimit.nonempty_equiv {L : FirstOrder.Language} {K : Set (CategoryTheory.Bundled L.Structure)} {M : Type w} [L.Structure M] {N : Type w} [L.Structure N] [Countable ((l : ) × L.Functions l)] [Countable M] [Countable N] (hM : FirstOrder.Language.IsFraisseLimit K M) (hN : FirstOrder.Language.IsFraisseLimit K N) :
                Nonempty (L.Equiv M N)

                The Fraïssé limit of a class is unique, in that any two Fraïssé limits are isomorphic.

                Any countable infinite structure in the empty language is a Fraïssé limit of the class of finite structures.

                The class of finite structures in the empty language is Fraïssé.