Documentation

Mathlib.ModelTheory.DirectLimit

Direct Limits of First-Order Structures #

This file constructs the direct limit of a directed system of first-order embeddings.

Main Definitions #

theorem FirstOrder.Language.DirectedSystem.map_self {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] (i : ι) (x : G i) (h : i i) :
(f i i h) x = x

A copy of DirectedSystem.map_self specialized to L-embeddings, as otherwise the fun i j h ↦ f i j h can confuse the simplifier.

theorem FirstOrder.Language.DirectedSystem.map_map {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {i j k : ι} (hij : i j) (hjk : j k) (x : G i) :
(f j k hjk) ((f i j hij) x) = (f i k ) x

A copy of DirectedSystem.map_map specialized to L-embeddings, as otherwise the fun i j h ↦ f i j h can confuse the simplifier.

def FirstOrder.Language.DirectedSystem.natLERec {L : FirstOrder.Language} {G' : Type w} [(i : ) → L.Structure (G' i)] (f' : (n : ) → L.Embedding (G' n) (G' (n + 1))) (m n : ) (h : m n) :
L.Embedding (G' m) (G' n)

Given a chain of embeddings of structures indexed by , defines a DirectedSystem by composing them.

Equations
Instances For
    @[simp]
    theorem FirstOrder.Language.DirectedSystem.coe_natLERec {L : FirstOrder.Language} {G' : Type w} [(i : ) → L.Structure (G' i)] (f' : (n : ) → L.Embedding (G' n) (G' (n + 1))) (m n : ) (h : m n) :
    (FirstOrder.Language.DirectedSystem.natLERec f' m n h) = fun (a : G' m) => Nat.leRecOn h (fun (k : ) => (f' k)) a
    instance FirstOrder.Language.DirectedSystem.natLERec.directedSystem {L : FirstOrder.Language} {G' : Type w} [(i : ) → L.Structure (G' i)] (f' : (n : ) → L.Embedding (G' n) (G' (n + 1))) :
    DirectedSystem G' fun (i j : ) (h : i j) => (FirstOrder.Language.DirectedSystem.natLERec f' i j h)
    Equations
    • =
    @[reducible, inline]
    abbrev FirstOrder.Language.Structure.Sigma {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) :
    Type (max v w)

    Alias for Σ i, G i.

    Equations
    Instances For
      @[reducible, inline]
      abbrev FirstOrder.Language.Structure.Sigma.mk {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) (i : ι) (x : G i) :

      Constructor for FirstOrder.Language.Structure.Sigma alias.

      Equations
      Instances For
        def FirstOrder.Language.DirectLimit.unify {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) {α : Type u_1} (x : αFirstOrder.Language.Structure.Sigma f) (i : ι) (h : i upperBounds (Set.range (Sigma.fst x))) (a : α) :
        G i

        Raises a family of elements in the Σ-type to the same level along the embeddings.

        Equations
        Instances For
          @[simp]
          theorem FirstOrder.Language.DirectLimit.unify_sigma_mk_self {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {α : Type u_1} {i : ι} {x : αG i} :
          theorem FirstOrder.Language.DirectLimit.comp_unify {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {α : Type u_1} {x : αFirstOrder.Language.Structure.Sigma f} {i j : ι} (ij : i j) (h : i upperBounds (Set.range (Sigma.fst x))) :
          def FirstOrder.Language.DirectLimit.setoid {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [IsDirected ι fun (x1 x2 : ι) => x1 x2] :

          The directed limit glues together the structures along the embeddings.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def FirstOrder.Language.DirectLimit.sigmaStructure {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Nonempty ι] :

            The structure on the Σ-type which becomes the structure on the direct limit after quotienting.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              def FirstOrder.Language.DirectLimit {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [IsDirected ι fun (x1 x2 : ι) => x1 x2] :
              Type (max v w)

              The direct limit of a directed system is the structures glued together along the embeddings.

              Equations
              Instances For
                instance FirstOrder.Language.instInhabitedDirectLimitOfDefault {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Inhabited ι] [Inhabited (G default)] :
                Equations
                theorem FirstOrder.Language.DirectLimit.equiv_iff {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {x y : FirstOrder.Language.Structure.Sigma f} {i : ι} (hx : x.fst i) (hy : y.fst i) :
                x y (f x.fst i hx) x.snd = (f y.fst i hy) y.snd
                theorem FirstOrder.Language.DirectLimit.funMap_unify_equiv {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {n : } (F : L.Functions n) (x : Fin nFirstOrder.Language.Structure.Sigma f) (i j : ι) (hi : i upperBounds (Set.range (Sigma.fst x))) (hj : j upperBounds (Set.range (Sigma.fst x))) :
                theorem FirstOrder.Language.DirectLimit.relMap_unify_equiv {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] {n : } (R : L.Relations n) (x : Fin nFirstOrder.Language.Structure.Sigma f) (i j : ι) (hi : i upperBounds (Set.range (Sigma.fst x))) (hj : j upperBounds (Set.range (Sigma.fst x))) :
                theorem FirstOrder.Language.DirectLimit.exists_unify_eq {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {α : Type u_1} [Finite α] {x y : αFirstOrder.Language.Structure.Sigma f} (xy : x y) :
                ∃ (i : ι) (hx : i upperBounds (Set.range (Sigma.fst x))) (hy : i upperBounds (Set.range (Sigma.fst y))), FirstOrder.Language.DirectLimit.unify f x i hx = FirstOrder.Language.DirectLimit.unify f y i hy
                theorem FirstOrder.Language.DirectLimit.funMap_equiv_unify {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {n : } (F : L.Functions n) (x : Fin nFirstOrder.Language.Structure.Sigma f) (i : ι) (hi : i upperBounds (Set.range (Sigma.fst x))) :
                theorem FirstOrder.Language.DirectLimit.relMap_equiv_unify {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {n : } (R : L.Relations n) (x : Fin nFirstOrder.Language.Structure.Sigma f) (i : ι) (hi : i upperBounds (Set.range (Sigma.fst x))) :
                noncomputable instance FirstOrder.Language.DirectLimit.prestructure {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] :

                The direct limit setoid respects the structure sigmaStructure, so quotienting by it gives rise to a valid structure.

                Equations
                noncomputable instance FirstOrder.Language.DirectLimit.instStructureDirectLimit {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] :

                The L.Structure on a direct limit of L.Structures.

                Equations
                @[simp]
                theorem FirstOrder.Language.DirectLimit.funMap_quotient_mk'_sigma_mk' {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {n : } {F : L.Functions n} {i : ι} {x : Fin nG i} :
                @[simp]
                theorem FirstOrder.Language.DirectLimit.relMap_quotient_mk'_sigma_mk' {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {n : } {R : L.Relations n} {i : ι} {x : Fin nG i} :
                theorem FirstOrder.Language.DirectLimit.exists_quotient_mk'_sigma_mk'_eq {L : FirstOrder.Language} {ι : Type v} [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {α : Type u_1} [Finite α] (x : αFirstOrder.Language.DirectLimit G f) :
                ∃ (i : ι) (y : αG i), x = fun (a : α) => FirstOrder.Language.Structure.Sigma.mk f i (y a)
                def FirstOrder.Language.DirectLimit.of (L : FirstOrder.Language) (ι : Type v) [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] (i : ι) :
                L.Embedding (G i) (FirstOrder.Language.DirectLimit G f)

                The canonical map from a component to the direct limit.

                Equations
                Instances For
                  @[simp]
                  theorem FirstOrder.Language.DirectLimit.of_apply {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {i : ι} {x : G i} :
                  theorem FirstOrder.Language.DirectLimit.of_f {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {i j : ι} {hij : i j} {x : G i} :
                  (FirstOrder.Language.DirectLimit.of L ι G f j) ((f i j hij) x) = (FirstOrder.Language.DirectLimit.of L ι G f i) x
                  theorem FirstOrder.Language.DirectLimit.exists_of {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] (z : FirstOrder.Language.DirectLimit G f) :
                  ∃ (i : ι) (x : G i), (FirstOrder.Language.DirectLimit.of L ι G f i) x = z

                  Every element of the direct limit corresponds to some element in some component of the directed system.

                  theorem FirstOrder.Language.DirectLimit.inductionOn {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {C : FirstOrder.Language.DirectLimit G fProp} (z : FirstOrder.Language.DirectLimit G f) (ih : ∀ (i : ι) (x : G i), C ((FirstOrder.Language.DirectLimit.of L ι G f i) x)) :
                  C z
                  theorem FirstOrder.Language.DirectLimit.iSup_range_of_eq_top {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] :
                  ⨆ (i : ι), (FirstOrder.Language.DirectLimit.of L ι G f i).toHom.range =
                  theorem FirstOrder.Language.DirectLimit.exists_fg_substructure_in_Sigma {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] (S : L.Substructure (FirstOrder.Language.DirectLimit G f)) (S_fg : S.FG) :
                  ∃ (i : ι) (T : L.Substructure (G i)), FirstOrder.Language.Substructure.map (FirstOrder.Language.DirectLimit.of L ι G f i).toHom T = S

                  Every finitely generated substructure of the direct limit corresponds to some substructure in some component of the directed system.

                  def FirstOrder.Language.DirectLimit.lift (L : FirstOrder.Language) (ι : Type v) [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [L.Structure P] (g : (i : ι) → L.Embedding (G i) P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (g i) x) :

                  The universal property of the direct limit: maps from the components to another module that respect the directed system structure (i.e. make some diagram commute) give rise to a unique map out of the direct limit.

                  Equations
                  Instances For
                    @[simp]
                    theorem FirstOrder.Language.DirectLimit.lift_quotient_mk'_sigma_mk' {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [L.Structure P] (g : (i : ι) → L.Embedding (G i) P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (g i) x) {i : ι} (x : G i) :
                    theorem FirstOrder.Language.DirectLimit.lift_of {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [L.Structure P] (g : (i : ι) → L.Embedding (G i) P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (g i) x) {i : ι} (x : G i) :
                    theorem FirstOrder.Language.DirectLimit.lift_unique {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [L.Structure P] (F : L.Embedding (FirstOrder.Language.DirectLimit G f) P) (x : FirstOrder.Language.DirectLimit G f) :
                    F x = (FirstOrder.Language.DirectLimit.lift L ι G f (fun (i : ι) => F.comp (FirstOrder.Language.DirectLimit.of L ι G f i)) ) x
                    theorem FirstOrder.Language.DirectLimit.range_lift {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {G : ιType w} [(i : ι) → L.Structure (G i)] {f : (i j : ι) → i jL.Embedding (G i) (G j)} [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] {P : Type u₁} [L.Structure P] (g : (i : ι) → L.Embedding (G i) P) (Hg : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (g i) x) :
                    (FirstOrder.Language.DirectLimit.lift L ι G f g Hg).toHom.range = ⨆ (i : ι), (g i).toHom.range
                    noncomputable def FirstOrder.Language.DirectLimit.equiv_lift (L : FirstOrder.Language) (ι : Type v) [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] (G' : ιType w') [(i : ι) → L.Structure (G' i)] (f' : (i j : ι) → i jL.Embedding (G' i) (G' j)) (g : (i : ι) → L.Equiv (G i) (G' i)) [DirectedSystem G' fun (i j : ι) (h : i j) => (f' i j h)] (H_commuting : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (f' i j hij) ((g i) x)) :

                    The isomorphism between limits of isomorphic systems.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem FirstOrder.Language.DirectLimit.equiv_lift_of (L : FirstOrder.Language) (ι : Type v) [Preorder ι] (G : ιType w) [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [IsDirected ι fun (x1 x2 : ι) => x1 x2] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] [Nonempty ι] (G' : ιType w') [(i : ι) → L.Structure (G' i)] (f' : (i j : ι) → i jL.Embedding (G' i) (G' j)) (g : (i : ι) → L.Equiv (G i) (G' i)) [DirectedSystem G' fun (i j : ι) (h : i j) => (f' i j h)] (H_commuting : ∀ (i j : ι) (hij : i j) (x : G i), (g j) ((f i j hij) x) = (f' i j hij) ((g i) x)) {i : ι} (x : G i) :
                      (FirstOrder.Language.DirectLimit.equiv_lift L ι G f G' f' g H_commuting) ((FirstOrder.Language.DirectLimit.of L ι G f i) x) = (FirstOrder.Language.DirectLimit.of L ι G' f' i) ((g i) x)
                      theorem FirstOrder.Language.DirectLimit.cg {L : FirstOrder.Language} {ι : Type u_1} [Countable ι] [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Nonempty ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) (h : ∀ (i : ι), FirstOrder.Language.Structure.CG L (G i)) [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] :

                      The direct limit of countably many countably generated structures is countably generated.

                      instance FirstOrder.Language.DirectLimit.cg' {L : FirstOrder.Language} {ι : Type u_1} [Countable ι] [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] [Nonempty ι] {G : ιType w} [(i : ι) → L.Structure (G i)] (f : (i j : ι) → i jL.Embedding (G i) (G j)) [h : ∀ (i : ι), FirstOrder.Language.Structure.CG L (G i)] [DirectedSystem G fun (i j : ι) (h : i j) => (f i j h)] :
                      Equations
                      • =
                      instance FirstOrder.Language.instDirectedSystemSubtypeMemSubstructureCoeOrderHomEmbeddingInclusion {L : FirstOrder.Language} {ι : Type v} [Preorder ι] {M : Type u_1} [L.Structure M] (S : ι →o L.Substructure M) :
                      DirectedSystem (fun (i : ι) => (S i)) fun (x x_1 : ι) (h : x x_1) => (FirstOrder.Language.Substructure.inclusion )
                      Equations
                      • =
                      def FirstOrder.Language.DirectLimit.liftInclusion {L : FirstOrder.Language} {ι : Type v} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {M : Type u_1} [L.Structure M] (S : ι →o L.Substructure M) :
                      L.Embedding (FirstOrder.Language.DirectLimit (fun (i : ι) => (S i)) fun (x x_1 : ι) (h : x x_1) => FirstOrder.Language.Substructure.inclusion ) M

                      The map from a direct limit of a system of substructures of M into M.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem FirstOrder.Language.DirectLimit.liftInclusion_of {L : FirstOrder.Language} {ι : Type v} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {M : Type u_1} [L.Structure M] (S : ι →o L.Substructure M) {i : ι} (x : (S i)) :
                        (FirstOrder.Language.DirectLimit.liftInclusion S) ((FirstOrder.Language.DirectLimit.of L ι (fun (x : ι) => (S x)) (fun (x x_1 : ι) (h : x x_1) => FirstOrder.Language.Substructure.inclusion ) i) x) = (S i).subtype x
                        theorem FirstOrder.Language.DirectLimit.rangeLiftInclusion {L : FirstOrder.Language} {ι : Type v} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {M : Type u_1} [L.Structure M] (S : ι →o L.Substructure M) :
                        (FirstOrder.Language.DirectLimit.liftInclusion S).toHom.range = ⨆ (i : ι), S i
                        noncomputable def FirstOrder.Language.DirectLimit.Equiv_iSup {L : FirstOrder.Language} {ι : Type v} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {M : Type u_1} [L.Structure M] (S : ι →o L.Substructure M) :
                        L.Equiv (FirstOrder.Language.DirectLimit (fun (i : ι) => (S i)) fun (x x_1 : ι) (h : x x_1) => FirstOrder.Language.Substructure.inclusion ) (iSup S)

                        The isomorphism between a direct limit of a system of substructures and their union.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem FirstOrder.Language.DirectLimit.Equiv_isup_of_apply {L : FirstOrder.Language} {ι : Type v} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {M : Type u_1} [L.Structure M] (S : ι →o L.Substructure M) {i : ι} (x : (S i)) :
                          theorem FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion_apply {L : FirstOrder.Language} {ι : Type v} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {M : Type u_1} [L.Structure M] (S : ι →o L.Substructure M) {i : ι} (x : (S i)) :
                          @[simp]
                          theorem FirstOrder.Language.DirectLimit.Equiv_isup_symm_inclusion {L : FirstOrder.Language} {ι : Type v} [Preorder ι] [Nonempty ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {M : Type u_1} [L.Structure M] (S : ι →o L.Substructure M) (i : ι) :