Documentation

Mathlib.RingTheory.Unramified.Finite

Various results about unramified algebras #

We prove various theorems about unramified algebras. In fact we work in the more general setting of formally unramified algebras which are essentially of finite type.

Main results #

References #

theorem Algebra.FormallyUnramified.iff_exists_tensorProduct {R : Type u_2} {S : Type u_3} [CommRing R] [CommRing S] [Algebra R S] [EssFiniteType R S] :
FormallyUnramified R S ∃ (t : TensorProduct R S S), (∀ (s : S), (1 ⊗ₜ[R] s - s ⊗ₜ[R] 1) * t = 0) (TensorProduct.lmul' R) t = 1

Proposition I.2.3 + I.2.6 of [Ive06] A finite-type R-algebra S is (formally) unramified iff there exists a t : S ⊗[R] S satisfying

  1. t annihilates every 1 ⊗ s - s ⊗ 1.
  2. the image of t is 1 under the map S ⊗[R] S → S.
theorem Algebra.FormallyUnramified.finite_of_free_aux {R : Type u_3} {S : Type u_4} [CommRing R] [CommRing S] [Algebra R S] (I : Type u_2) [DecidableEq I] (b : Basis I R S) (f : I →₀ S) (x : S) (a : II →₀ R) (ha : a = fun (i : I) => b.repr (b i * x)) :
(1 ⊗ₜ[R] x * f.sum fun (i : I) (y : S) => y ⊗ₜ[R] b i) = kf.support.biUnion fun (i : I) => (a i).support, (b.repr (f.sum fun (i : I) (y : S) => (a i) k y)).sum fun (j : I) (c : R) => c b j ⊗ₜ[R] b k
noncomputable def Algebra.FormallyUnramified.elem (R : Type u_2) (S : Type u_3) [CommRing R] [CommRing S] [Algebra R S] [FormallyUnramified R S] [EssFiniteType R S] :

A finite-type R-algebra S is (formally) unramified iff there exists a t : S ⊗[R] S satisfying

  1. t annihilates every 1 ⊗ s - s ⊗ 1.
  2. the image of t is 1 under the map S ⊗[R] S → S. See Algebra.FormallyUnramified.iff_exists_tensorProduct. This is the choice of such a t.
Equations
Instances For
    theorem Algebra.FormallyUnramified.one_tmul_mul_elem {R : Type u_3} {S : Type u_2} [CommRing R] [CommRing S] [Algebra R S] [FormallyUnramified R S] [EssFiniteType R S] (s : S) :
    1 ⊗ₜ[R] s * elem R S = s ⊗ₜ[R] 1 * elem R S

    An unramified free algebra is finitely generated. Iversen I.2.8

    noncomputable def Algebra.FormallyUnramified.sec (R : Type u_2) (S : Type u_3) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_1) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] [FormallyUnramified R S] [EssFiniteType R S] :

    Proposition I.2.3 of [Ive06] If S is an unramified R-algebra, and M is a S-module, then the map S ⊗[R] M →ₗ[S] M taking (b, m) ↦ b • m admits a S-linear section.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Algebra.FormallyUnramified.comp_sec (R : Type u_3) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (M : Type u_1) [AddCommGroup M] [Module R M] [Module S M] [IsScalarTower R S M] [FormallyUnramified R S] [EssFiniteType R S] :
      TensorProduct.AlgebraTensorModule.lift (R (lsmul S S M).toLinearMap.flip).flip ∘ₗ sec R S M = LinearMap.id

      If S is an unramified R-algebra, then R-flat implies S-flat. Iversen I.2.7

      If S is an unramified R-algebra, then R-projective implies S-projective.