Documentation
Mathlib
.
RingTheory
.
Ideal
.
IdempotentFG
Search
return to top
source
Imports
Init
Mathlib.Order.Basic
Mathlib.Algebra.Ring.Idempotent
Mathlib.RingTheory.Finiteness.Nakayama
Imported by
Ideal
.
isIdempotentElem_iff_of_fg
Ideal
.
isIdempotentElem_iff_eq_bot_or_top
Lemmas on idempotent finitely generated ideals
#
source
theorem
Ideal
.
isIdempotentElem_iff_of_fg
{R :
Type
u_1}
[
CommRing
R
]
(I :
Ideal
R
)
(h :
I
.
FG
)
:
IsIdempotentElem
I
↔
∃ (
e
:
R
),
IsIdempotentElem
e
∧
I
=
Submodule.span
R
{
e
}
A finitely generated idempotent ideal is generated by an idempotent element
source
theorem
Ideal
.
isIdempotentElem_iff_eq_bot_or_top
{R :
Type
u_1}
[
CommRing
R
]
[
IsDomain
R
]
(I :
Ideal
R
)
(h :
I
.
FG
)
:
IsIdempotentElem
I
↔
I
=
⊥
∨
I
=
⊤