Nakayama's lemma #
Main results #
exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul
is Nakayama's lemma, in the following form: if N is a finitely generated submodule of an ambient R-module M and I is an ideal of R such that N ⊆ IN, then there exists r ∈ 1 + I such that rN = 0.
theorem
Submodule.exists_sub_one_mem_and_smul_eq_zero_of_fg_of_le_smul
{R : Type u_3}
[CommRing R]
{M : Type u_4}
[AddCommGroup M]
[Module R M]
(I : Ideal R)
(N : Submodule R M)
(hn : N.FG)
(hin : N ≤ I • N)
:
Nakayama's Lemma. Atiyah-Macdonald 2.5, Eisenbud 4.7, Matsumura 2.2, Stacks 00DV