Documentation

Mathlib.RingTheory.EssentialFiniteness

Essentially of finite type algebras #

Main results #

class Algebra.EssFiniteType (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] :

An R-algebra is essentially of finite type if it is the localization of an algebra of finite type. See essFiniteType_iff_exists_subalgebra.

Instances
    noncomputable def Algebra.EssFiniteType.finset (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] [h : EssFiniteType R S] :

    Let S be an R-algebra essentially of finite type, this is a choice of a finset s ⊆ S such that S is the localization of R[s].

    Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev Algebra.EssFiniteType.subalgebra (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] [EssFiniteType R S] :

      A choice of a subalgebra of finite type in an essentially of finite type algebra, such that its localization is the whole ring.

      Equations
      Instances For
        theorem Algebra.EssFiniteType.adjoin_mem_finset (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] [EssFiniteType R S] :
        adjoin R {x : (subalgebra R S) | x finset R S} =
        noncomputable def Algebra.EssFiniteType.submonoid (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] [EssFiniteType R S] :

        A submonoid of EssFiniteType.subalgebra R S, whose localization is the whole algebra S.

        Equations
        Instances For
          theorem Algebra.essFiniteType_cond_iff (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] (σ : Finset S) :
          IsLocalization (Submonoid.comap (algebraMap (↥(adjoin R σ)) S) (IsUnit.submonoid S)) S ∀ (s : S), tadjoin R σ, IsUnit t s * t adjoin R σ
          theorem Algebra.essFiniteType_iff (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] :
          EssFiniteType R S ∃ (σ : Finset S), ∀ (s : S), tadjoin R σ, IsUnit t s * t adjoin R σ
          theorem Algebra.EssFiniteType.aux (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] (σ : Subalgebra R S) (hσ : ∀ (s : S), tσ, IsUnit t s * t σ) (τ : Set T) (t : T) (ht : t adjoin S τ) :
          sσ, IsUnit s s t Subalgebra.map (IsScalarTower.toAlgHom R S T) σ adjoin R τ
          theorem Algebra.EssFiniteType.comp (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [h₁ : EssFiniteType R S] [h₂ : EssFiniteType S T] :
          theorem Algebra.essFiniteType_iff_exists_subalgebra (R : Type u_1) (S : Type u_2) [CommRing R] [CommRing S] [Algebra R S] :
          EssFiniteType R S ∃ (S₀ : Subalgebra R S) (M : Submonoid S₀), FiniteType R S₀ IsLocalization M S
          instance Algebra.EssFiniteType.baseChange (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [h : EssFiniteType R S] :
          theorem Algebra.EssFiniteType.of_comp (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [h : EssFiniteType R T] :
          theorem Algebra.EssFiniteType.comp_iff (R : Type u_1) (S : Type u_2) (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [Algebra S T] [IsScalarTower R S T] [EssFiniteType R S] :
          theorem Algebra.EssFiniteType.algHom_ext {R : Type u_1} {S : Type u_2} (T : Type u_3) [CommRing R] [CommRing S] [CommRing T] [Algebra R S] [Algebra R T] [EssFiniteType R S] (f g : S →ₐ[R] T) (H : sfinset R S, f s = g s) :
          f = g