Documentation

Mathlib.RingTheory.WittVector.Basic

Witt vectors #

This file verifies that the ring operations on WittVector p R satisfy the axioms of a commutative ring.

Main definitions #

Notation #

We use notation 𝕎 R, entered \bbW, for the Witt vectors over R.

Implementation details #

As we prove that the ghost components respect the ring operations, we face a number of repetitive proofs. To avoid duplicating code we factor these proofs into a custom tactic, only slightly more powerful than a tactic macro. This tactic is not particularly useful outside of its applications in this file.

References #

def WittVector.mapFun {p : } {α : Type u_4} {β : Type u_5} (f : αβ) :
WittVector p αWittVector p β

f : α → β induces a map from 𝕎 α to 𝕎 β by applying f componentwise. If f is a ring homomorphism, then so is f, see WittVector.map f.

Equations
Instances For
    theorem WittVector.mapFun.injective {p : } {α : Type u_4} {β : Type u_5} (f : αβ) (hf : Function.Injective f) :
    theorem WittVector.mapFun.surjective {p : } {α : Type u_4} {β : Type u_5} (f : αβ) (hf : Function.Surjective f) :

    Auxiliary tactic for showing that mapFun respects the ring operations.

    Equations
    Instances For
      theorem WittVector.mapFun.zero {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) :
      WittVector.mapFun (f) 0 = 0
      theorem WittVector.mapFun.one {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) :
      WittVector.mapFun (f) 1 = 1
      theorem WittVector.mapFun.add {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (x : WittVector p R) (y : WittVector p R) :
      WittVector.mapFun (f) (x + y) = WittVector.mapFun (f) x + WittVector.mapFun (f) y
      theorem WittVector.mapFun.sub {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (x : WittVector p R) (y : WittVector p R) :
      WittVector.mapFun (f) (x - y) = WittVector.mapFun (f) x - WittVector.mapFun (f) y
      theorem WittVector.mapFun.mul {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (x : WittVector p R) (y : WittVector p R) :
      WittVector.mapFun (f) (x * y) = WittVector.mapFun (f) x * WittVector.mapFun (f) y
      theorem WittVector.mapFun.neg {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (x : WittVector p R) :
      theorem WittVector.mapFun.nsmul {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (n : ) (x : WittVector p R) :
      WittVector.mapFun (f) (n x) = n WittVector.mapFun (f) x
      theorem WittVector.mapFun.zsmul {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (z : ) (x : WittVector p R) :
      WittVector.mapFun (f) (z x) = z WittVector.mapFun (f) x
      theorem WittVector.mapFun.pow {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (x : WittVector p R) (n : ) :
      WittVector.mapFun (f) (x ^ n) = WittVector.mapFun (f) x ^ n
      theorem WittVector.mapFun.natCast {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (n : ) :
      WittVector.mapFun f n = n
      theorem WittVector.mapFun.intCast {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (n : ) :
      WittVector.mapFun f n = n

      An auxiliary tactic for proving that ghostFun respects the ring operations.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem WittVector.matrix_vecEmpty_coeff {p : } {R : Type u_6} (i : Fin 0) (j : ) :
        ![].coeff j = ![]
        instance WittVector.instCommRingWittVector (p : ) (R : Type u_1) [hp : Fact (Nat.Prime p)] [CommRing R] :

        The commutative ring structure on 𝕎 R.

        Equations
        noncomputable def WittVector.map {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) :

        WittVector.map f is the ring homomorphism 𝕎 R →+* 𝕎 S naturally induced by a ring homomorphism f : R →+* S. It acts coefficientwise.

        Equations
        Instances For
          theorem WittVector.map_injective {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (hf : Function.Injective f) :
          theorem WittVector.map_surjective {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (hf : Function.Surjective f) :
          @[simp]
          theorem WittVector.map_coeff {p : } {R : Type u_1} {S : Type u_2} [hp : Fact (Nat.Prime p)] [CommRing R] [CommRing S] (f : R →+* S) (x : WittVector p R) (n : ) :
          ((WittVector.map f) x).coeff n = f (x.coeff n)
          def WittVector.ghostMap {p : } {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :
          WittVector p R →+* R

          WittVector.ghostMap is a ring homomorphism that maps each Witt vector to the sequence of its ghost components.

          Equations
          • WittVector.ghostMap = { toMonoidHom := { toOneHom := { toFun := WittVector.ghostFun, map_one' := }, map_mul' := }, map_zero' := , map_add' := }
          Instances For
            def WittVector.ghostComponent {p : } {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (n : ) :

            Evaluates the nth Witt polynomial on the first n coefficients of x, producing a value in R.

            Equations
            Instances For
              @[simp]
              theorem WittVector.ghostMap_apply {p : } {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (x : WittVector p R) (n : ) :
              WittVector.ghostMap x n = (WittVector.ghostComponent n) x
              def WittVector.ghostEquiv (p : ) (R : Type u_1) [hp : Fact (Nat.Prime p)] [CommRing R] [Invertible p] :
              WittVector p R ≃+* (R)

              WittVector.ghostMap is a ring isomorphism when p is invertible in R.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem WittVector.ghostEquiv_coe (p : ) (R : Type u_1) [hp : Fact (Nat.Prime p)] [CommRing R] [Invertible p] :
                (WittVector.ghostEquiv p R) = WittVector.ghostMap
                theorem WittVector.ghostMap.bijective_of_invertible (p : ) (R : Type u_1) [hp : Fact (Nat.Prime p)] [CommRing R] [Invertible p] :
                Function.Bijective WittVector.ghostMap
                @[simp]
                theorem WittVector.constantCoeff_apply {p : } {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] (x : WittVector p R) :
                WittVector.constantCoeff x = x.coeff 0
                noncomputable def WittVector.constantCoeff {p : } {R : Type u_1} [hp : Fact (Nat.Prime p)] [CommRing R] :

                WittVector.coeff x 0 as a RingHom

                Equations
                • WittVector.constantCoeff = { toMonoidHom := { toOneHom := { toFun := fun (x : WittVector p R) => x.coeff 0, map_one' := }, map_mul' := }, map_zero' := , map_add' := }
                Instances For
                  Equations
                  • =