Documentation

Mathlib.CategoryTheory.Bicategory.Kan.Adjunction

Adjunctions as Kan extensions #

We show that adjunctions are realized as Kan extensions or Kan lifts.

We also show that a left adjoint commutes with a left Kan extension. Under the assumption that IsLeftAdjoint h, the isomorphism f⁺ (g ≫ h) ≅ f⁺ g ≫ h can be accessed by Lan.CommuteWith.lanCompIso f g h.

References #

TODO #

At the moment, the results are stated for left Kan extensions and left Kan lifts. We can prove the similar results for right Kan extensions and right Kan lifts.

def CategoryTheory.Bicategory.Adjunction.isAbsoluteLeftKan {B : Type u} [Bicategory B] {a b : B} {f : a b} {u : b a} (adj : Adjunction f u) :
(LeftExtension.mk u adj.unit).IsAbsKan

For an adjuntion f ⊣ u, u is an absolute left Kan extension of the identity along f. The unit of this Kan extension is given by the unit of the adjunction.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def CategoryTheory.Bicategory.LeftExtension.IsKan.adjunction {B : Type u} [Bicategory B] {a b : B} {f : a b} {t : LeftExtension f (CategoryStruct.id a)} (H : t.IsKan) (H' : (t.whisker f).IsKan) :
    Adjunction f t.extension

    A left Kan extension of the identity along f such that f commutes with is a right adjoint to f. The unit of this adjoint is given by the unit of the Kan extension.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def CategoryTheory.Bicategory.LeftExtension.IsAbsKan.adjunction {B : Type u} [Bicategory B] {a b : B} {f : a b} (t : LeftExtension f (CategoryStruct.id a)) (H : t.IsAbsKan) :
      Adjunction f t.extension

      For an adjuntion f ⊣ u, u is a left Kan extension of the identity along f. The unit of this Kan extension is given by the unit of the adjunction.

      Equations
      Instances For
        def CategoryTheory.Bicategory.Adjunction.isAbsoluteLeftKanLift {B : Type u} [Bicategory B] {a b : B} {f : a b} {u : b a} (adj : Adjunction f u) :
        (LeftLift.mk f adj.unit).IsAbsKan

        For an adjuntion f ⊣ u, f is an absolute left Kan lift of the identity along u. The unit of this Kan lift is given by the unit of the adjunction.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def CategoryTheory.Bicategory.LeftLift.IsKan.adjunction {B : Type u} [Bicategory B] {a b : B} {u : b a} {t : LeftLift u (CategoryStruct.id a)} (H : t.IsKan) (H' : (t.whisker u).IsKan) :
          Adjunction t.lift u

          A left Kan lift of the identity along u such that u commutes with is a left adjoint to u. The unit of this adjoint is given by the unit of the Kan lift.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def CategoryTheory.Bicategory.LeftLift.IsAbsKan.adjunction {B : Type u} [Bicategory B] {a b : B} {u : b a} (t : LeftLift u (CategoryStruct.id a)) (H : t.IsAbsKan) :
            Adjunction t.lift u

            For an adjuntion f ⊣ u, f is a left Kan lift of the identity along u. The unit of this Kan lift is given by the unit of the adjunction.

            Equations
            Instances For
              def CategoryTheory.Bicategory.LeftExtension.isKanOfWhiskerLeftAdjoint {B : Type u} [Bicategory B] {a b c : B} {f : a b} {g : a c} {t : LeftExtension f g} (H : t.IsKan) {x : B} {h : c x} {u : x c} (adj : Adjunction h u) :
              (t.whisker h).IsKan

              A left adjoint commutes with a left Kan extension.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For