Documentation

Mathlib.CategoryTheory.Bicategory.Kan.IsKan

Kan extensions and Kan lifts in bicategories #

The left Kan extension of a 1-morphism g : a ⟶ c along a 1-morphism f : a ⟶ b is the initial object in the category of left extensions LeftExtension f g. The universal property can be accessed by the following definition and lemmas:

We also define left Kan lifts, right Kan extensions, and right Kan lifts.

Implementation Notes #

We use the Is-Has design pattern, which is used for the implementation of limits and colimits in the category theory library. This means that IsKan t is a structure containing the data of 2-morphisms which ensure that t is a Kan extension, while HasKan f g (to be implemented in the near future) is a Prop-valued typeclass asserting that a Kan extension of g along f exists.

We define LeftExtension.IsKan t for an extension t : LeftExtension f g (which is an abbreviation of t : StructuredArrow g (precomp _ f)) to be an abbreviation for StructuredArrow.IsUniversal t. This means that we can use the definitions and lemmas living in the namespace StructuredArrow.IsUniversal.

References #

https://ncatlab.org/nlab/show/Kan+extension

@[inline, reducible]
abbrev CategoryTheory.Bicategory.LeftExtension.IsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} (t : CategoryTheory.Bicategory.LeftExtension f g) :
Type (max (max v w) w)

A left Kan extension of g along f is an initial object in LeftExtension f g.

Equations
Instances For
    @[inline, reducible]
    abbrev CategoryTheory.Bicategory.LeftExtension.IsAbsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} (t : CategoryTheory.Bicategory.LeftExtension f g) :
    Type (max (max u v) w)

    An absolute left Kan extension is a Kan extension that commutes with any 1-morphism.

    Equations
    Instances For
      @[inline, reducible]

      To show that a left extension t is a Kan extension, we need to show that for every left extension s there is a unique morphism t ⟶ s.

      Equations
      Instances For

        An absolute left Kan extension is a left Kan extension.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[inline, reducible]
          abbrev CategoryTheory.Bicategory.LeftLift.IsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.LeftLift f g) :
          Type (max (max v w) w)

          A left Kan lift of g along f is an initial object in LeftLift f g.

          Equations
          Instances For
            @[inline, reducible]
            abbrev CategoryTheory.Bicategory.LeftLift.IsAbsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.LeftLift f g) :
            Type (max (max u v) w)

            An absolute left Kan lift is a Kan lift such that every 1-morphism commutes with it.

            Equations
            Instances For
              @[inline, reducible]
              abbrev CategoryTheory.Bicategory.LeftLift.IsKan.mk {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} {t : CategoryTheory.Bicategory.LeftLift f g} (desc : (s : CategoryTheory.Bicategory.LeftLift f g) → t s) (w : ∀ (s : CategoryTheory.Bicategory.LeftLift f g) (τ : t s), τ = desc s) :

              To show that a left lift t is a Kan lift, we need to show that for every left lift s there is a unique morphism t ⟶ s.

              Equations
              Instances For

                An absolute left Kan lift is a left Kan lift.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[inline, reducible]
                  abbrev CategoryTheory.Bicategory.RightExtension.IsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : a b} {g : a c} (t : CategoryTheory.Bicategory.RightExtension f g) :
                  Type (max (max v w) w)

                  A right Kan extension of g along f is a terminal object in RightExtension f g.

                  Equations
                  Instances For
                    @[inline, reducible]
                    abbrev CategoryTheory.Bicategory.RightLift.IsKan {B : Type u} [CategoryTheory.Bicategory B] {a : B} {b : B} {c : B} {f : b a} {g : c a} (t : CategoryTheory.Bicategory.RightLift f g) :
                    Type (max (max v w) w)

                    A right Kan lift of g along f is a terminal object in RightLift f g.

                    Equations
                    Instances For