House of an algebraic number #
This file defines the house of an algebraic number α
, which is
the largest of the modulus of its conjugates.
References #
Tagshouse #
number field, algebraic number, house
The house of an algebraic number as the norm of its image by the canonical embedding.
Equations
Instances For
The house is the largest of the modulus of the conjugates of an algebraic number.
theorem
NumberField.house_sum_le_sum_house
{K : Type u_1}
[Field K]
[NumberField K]
{ι : Type u_2}
(s : Finset ι)
(α : ι → K)
:
@[simp]
theorem
NumberField.house.basis_repr_abs_le_const_mul_house
(K : Type u_1)
[Field K]
[NumberField K]
[DecidableEq (K →+* ℂ)]
(α : RingOfIntegers K)
(i : K →+* ℂ)
:
Complex.abs ↑((((integralBasis K).reindex (equivReindex K).symm).repr ↑α) i) ≤ NumberField.house.c✝ K * house ((algebraMap (RingOfIntegers K) K) α)
theorem
NumberField.house.exists_ne_zero_int_vec_house_le
(K : Type u_1)
[Field K]
[NumberField K]
{α : Type u_2}
{β : Type u_3}
(a : Matrix α β (RingOfIntegers K))
(ha : a ≠ 0)
{p q : ℕ}
(h0p : 0 < p)
(hpq : p < q)
[Fintype β]
(cardβ : Fintype.card β = q)
{A : ℝ}
(habs : ∀ (k : α) (l : β), house ((algebraMap (RingOfIntegers K) K) (a k l)) ≤ A)
[DecidableEq (K →+* ℂ)]
[Fintype α]
(cardα : Fintype.card α = p)
:
∃ (ξ : β → RingOfIntegers K),
ξ ≠ 0 ∧ a.mulVec ξ = 0 ∧ ∀ (l : β), house ↑(ξ l) ≤ NumberField.house.c₁✝ K * (NumberField.house.c₁✝ K * ↑q * A) ^ (↑p / (↑q - ↑p))
There exists a "small" non-zero algebraic integral solution of an non-trivial underdetermined system of linear equations with algebraic integer coefficients.