Documentation

Mathlib.NumberTheory.NumberField.EquivReindex

Reindexed basis #

This file introduces an equivalence between the set of embeddings of K into and the index set of the chosen basis of the ring of integers of K.

Tags #

house, number field, algebraic number

@[reducible, inline]

An equivalence between the set of embeddings of K into and the index set of the chosen basis of the ring of integers of K.

Equations
Instances For
    @[reducible, inline]

    The basis matrix for the embeddings of K into . This matrix is formed by taking the lattice basis vectors of K and reindexing them according to the equivalence equivReindex, then transposing the resulting matrix.

    Equations
    Instances For
      theorem NumberField.canonicalEmbedding_eq_basisMatrix_mulVec {K : Type u_1} [Field K] [NumberField K] (α : K) :
      (canonicalEmbedding K) α = (basisMatrix K).transpose.mulVec fun (i : K →+* ) => ((((integralBasis K).reindex (equivReindex K).symm).repr α) i)
      theorem NumberField.inverse_basisMatrix_mulVec_eq_repr {K : Type u_1} [Field K] [NumberField K] [DecidableEq (K →+* )] (α : RingOfIntegers K) (i : K →+* ) :
      (basisMatrix K).transpose⁻¹.mulVec (fun (j : K →+* ) => (canonicalEmbedding K) ((algebraMap (RingOfIntegers K) K) α) j) i = ((((integralBasis K).reindex (equivReindex K).symm).repr α) i)