The nerve of a category #
This file provides the definition of the nerve of a category C
,
which is a simplicial set nerve C
(see [GJ09], Example I.1.4).
By definition, the type of n
-simplices of nerve C
is ComposableArrows C n
,
which is the category Fin (n + 1) ⥤ C
.
References #
The nerve of a category
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.nerve_obj
(C : Type u)
[Category.{v, u} C]
(Δ : SimplexCategoryᵒᵖ)
:
(nerve C).obj Δ = ComposableArrows C (Opposite.unop Δ).len
@[simp]
theorem
CategoryTheory.nerve_map
(C : Type u)
[Category.{v, u} C]
{X✝ Y✝ : SimplexCategoryᵒᵖ}
(f : X✝ ⟶ Y✝)
(x : ComposableArrows C (Opposite.unop X✝).len)
:
(nerve C).map f x = x.whiskerLeft (SimplexCategory.toCat.map f.unop)
instance
CategoryTheory.instCategoryObjOppositeSimplexCategoryNerve
{C : Type u_1}
[Category.{u_2, u_1} C]
{Δ : SimplexCategoryᵒᵖ}
:
Category.{u_2, max u_1 u_2} ((nerve C).obj Δ)
def
CategoryTheory.nerveMap
{C D : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
(F : Functor C D)
:
Given a functor C ⥤ D
, we obtain a morphism nerve C ⟶ nerve D
of simplicial sets.
Equations
- CategoryTheory.nerveMap F = { app := fun (x : SimplexCategoryᵒᵖ) => (F.mapComposableArrows (Opposite.unop x).len).obj, naturality := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.nerveMap_app
{C D : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
(F : Functor C D)
(x✝ : SimplexCategoryᵒᵖ)
(a✝ : ComposableArrows C (Opposite.unop x✝).len)
:
(nerveMap F).app x✝ a✝ = (F.mapComposableArrows (Opposite.unop x✝).len).obj a✝
@[simp]
theorem
CategoryTheory.nerveFunctor_map
{X✝ Y✝ : Cat}
(F : X✝ ⟶ Y✝)
:
nerveFunctor.map F = nerveMap F
def
CategoryTheory.nerveEquiv
(C : Type u)
[Category.{v, u} C]
:
(nerve C).obj (Opposite.op (SimplexCategory.mk 0)) ≃ C
The 0-simplices of the nerve of a category are equivalent to the objects of the category.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Nerve.δ₀_eq
{C : Type u_1}
[Category.{u_2, u_1} C]
{n : ℕ}
{x : (nerve C).obj (Opposite.op (SimplexCategory.mk (n + 1)))}
:
SimplicialObject.δ (nerve C) 0 x = ComposableArrows.δ₀ x