The nerve of a category #
This file provides the definition of the nerve of a category C,
which is a simplicial set nerve C (see [GJ09], Example I.1.4).
By definition, the type of n-simplices of nerve C is ComposableArrows C n,
which is the category Fin (n + 1) ⥤ C.
References #
The nerve of a category
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.nerve_map
(C : Type u)
[Category.{v, u} C]
{X✝ Y✝ : SimplexCategoryᵒᵖ}
(f : X✝ ⟶ Y✝)
(x : ComposableArrows C (Opposite.unop X✝).len)
:
instance
CategoryTheory.instCategoryObjOppositeSimplexCategoryNerve
{C : Type u_1}
[Category.{u_2, u_1} C]
{Δ : SimplexCategoryᵒᵖ}
:
Category.{u_2, max u_1 u_2} ((nerve C).obj Δ)
def
CategoryTheory.nerveMap
{C D : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
(F : Functor C D)
:
Given a functor C ⥤ D, we obtain a morphism nerve C ⟶ nerve D of simplicial sets.
Equations
- CategoryTheory.nerveMap F = { app := fun (x : SimplexCategoryᵒᵖ) => (F.mapComposableArrows (Opposite.unop x).len).obj, naturality := ⋯ }
Instances For
theorem
CategoryTheory.nerveMap_app
{C D : Type u}
[Category.{v, u} C]
[Category.{v, u} D]
(F : Functor C D)
(x✝ : SimplexCategoryᵒᵖ)
(a✝ : ComposableArrows C (Opposite.unop x✝).len)
:
@[simp]
The 0-simplices of the nerve of a category are equivalent to the objects of the category.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.nerve.δ_obj
{C : Type u}
[Category.{v, u} C]
{n : ℕ}
(i : Fin (n + 2))
(x : ComposableArrows C (n + 1))
(j : Fin (n + 1))
:
theorem
CategoryTheory.nerve.σ_obj
{C : Type u}
[Category.{v, u} C]
{n : ℕ}
(i : Fin (n + 1))
(x : ComposableArrows C n)
(j : Fin (n + 2))
:
theorem
CategoryTheory.nerve.δ₀_eq
{C : Type u}
[Category.{v, u} C]
{n : ℕ}
{x : ComposableArrows C (n + 1)}
:
theorem
CategoryTheory.nerve.δ₂_mk₂_eq
{C : Type u}
[Category.{v, u} C]
{X₀ X₁ X₂ : C}
(f : X₀ ⟶ X₁)
(g : X₁ ⟶ X₂)
:
theorem
CategoryTheory.nerve.δ₀_mk₂_eq
{C : Type u}
[Category.{v, u} C]
{X₀ X₁ X₂ : C}
(f : X₀ ⟶ X₁)
(g : X₁ ⟶ X₂)
:
theorem
CategoryTheory.nerve.δ₁_mk₂_eq
{C : Type u}
[Category.{v, u} C]
{X₀ X₁ X₂ : C}
(f : X₀ ⟶ X₁)
(g : X₁ ⟶ X₂)
:
SimplicialObject.δ (nerve C) 1 (ComposableArrows.mk₂ f g) = ComposableArrows.mk₁ (CategoryStruct.comp f g)
theorem
CategoryTheory.nerve.ext_of_isThin
{C : Type u}
[Category.{v, u} C]
[Quiver.IsThin C]
{n : SimplexCategoryᵒᵖ}
{x y : (nerve C).obj n}
(h : x.obj = y.obj)
:
theorem
CategoryTheory.nerve.ext_of_isThin_iff
{C : Type u}
[Category.{v, u} C]
[Quiver.IsThin C]
{n : SimplexCategoryᵒᵖ}
{x y : (nerve C).obj n}
:
@[simp]
theorem
CategoryTheory.nerve.left_edge
{C : Type u}
[Category.{v, u} C]
{x y : ComposableArrows C 0}
(e : SSet.Edge x y)
:
@[simp]
theorem
CategoryTheory.nerve.right_edge
{C : Type u}
[Category.{v, u} C]
{x y : ComposableArrows C 0}
(e : SSet.Edge x y)
:
Bijection between edges in the nerve of category and morphisms in the category.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.nerve.mk₁_homEquiv_apply
{C : Type u}
[Category.{v, u} C]
{x y : ComposableArrows C 0}
(e : SSet.Edge x y)
:
def
CategoryTheory.nerve.edgeMk
{C : Type u}
[Category.{v, u} C]
{x y : C}
(f : x ⟶ y)
:
SSet.Edge (nerveEquiv.symm x) (nerveEquiv.symm y)
Constructor for edges in the nerve of a category. (See also homEquiv.)
Equations
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.nerve.homEquiv_edgeMk
{C : Type u}
[Category.{v, u} C]
{x y : C}
(f : x ⟶ y)
:
theorem
CategoryTheory.nerve.homEquiv_id
{C : Type u}
[Category.{v, u} C]
(x : ComposableArrows C 0)
:
theorem
CategoryTheory.nerve.nonempty_compStruct_iff
{C : Type u}
[Category.{v, u} C]
{x₀ x₁ x₂ : C}
(f₀₁ : x₀ ⟶ x₁)
(f₁₂ : x₁ ⟶ x₂)
(f₀₂ : x₀ ⟶ x₂)
:
theorem
CategoryTheory.nerve.homEquiv_comp
{C : Type u}
[Category.{v, u} C]
{x₀ x₁ x₂ : ComposableArrows C 0}
{e₀₁ : SSet.Edge x₀ x₁}
{e₁₂ : SSet.Edge x₁ x₂}
{e₀₂ : SSet.Edge x₀ x₂}
(h : e₀₁.CompStruct e₁₂ e₀₂)
:
@[simp]
theorem
CategoryTheory.nerve.homEquiv_edgeMk_map_nerveMap
{C : Type u}
[Category.{v, u} C]
{D : Type u}
[Category.{v, u} D]
{x y : C}
(f : x ⟶ y)
(F : Functor C D)
: