The nerve of a category #
This file provides the definition of the nerve of a category C
,
which is a simplicial set nerve C
(see [GJ09], Example I.1.4).
By definition, the type of n
-simplices of nerve C
is ComposableArrows C n
,
which is the category Fin (n + 1) ⥤ C
.
References #
The nerve of a category
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.nerve_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(Δ : SimplexCategoryᵒᵖ)
:
(CategoryTheory.nerve C).obj Δ = CategoryTheory.ComposableArrows C (Opposite.unop Δ).len
@[simp]
theorem
CategoryTheory.nerve_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
{X✝ Y✝ : SimplexCategoryᵒᵖ}
(f : X✝ ⟶ Y✝)
(x : CategoryTheory.ComposableArrows C (Opposite.unop X✝).len)
:
(CategoryTheory.nerve C).map f x = x.whiskerLeft (SimplexCategory.toCat.map f.unop)
instance
CategoryTheory.instCategoryObjOppositeSimplexCategoryNerve
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{Δ : SimplexCategoryᵒᵖ}
:
Equations
- CategoryTheory.instCategoryObjOppositeSimplexCategoryNerve = inferInstance
The nerve of a category, as a functor Cat ⥤ SSet
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.nerveFunctor_map_app
{X✝ Y✝ : CategoryTheory.Cat}
(F : X✝ ⟶ Y✝)
(x✝ : SimplexCategoryᵒᵖ)
(a✝ : CategoryTheory.ComposableArrows (↑X✝) (Opposite.unop x✝).len)
:
(CategoryTheory.nerveFunctor.map F).app x✝ a✝ = (CategoryTheory.Functor.mapComposableArrows F (Opposite.unop x✝).len).obj a✝
theorem
CategoryTheory.Nerve.δ₀_eq
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
{n : ℕ}
{x : (CategoryTheory.nerve C).obj (Opposite.op (SimplexCategory.mk (n + 1)))}
: