Documentation

Mathlib.AlgebraicTopology.SimplicialObject.Basic

Simplicial objects in a category. #

A simplicial object in a category C is a C-valued presheaf on SimplexCategory. (Similarly a cosimplicial object is functor SimplexCategory ⥤ C.)

Use the notation X _[n] in the Simplicial locale to obtain the n-th term of a (co)simplicial object X, where n is a natural number.

The category of simplicial objects valued in a category C. This is the category of contravariant functors from SimplexCategory to C.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.instCategorySimplicialObject_comp_app (C : Type u) [Category.{v, u} C] {X✝ Y✝ Z✝ : Functor SimplexCategoryᵒᵖ C} (α : X✝ Y✝) (β : Y✝ Z✝) (X : SimplexCategoryᵒᵖ) :
    (CategoryStruct.comp α β).app X = CategoryStruct.comp (α.app X) (β.app X)

    Pretty printer defined by notation3 command.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      X _[n] denotes the nth-term of the simplicial object X

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem CategoryTheory.SimplicialObject.hom_ext {C : Type u} [Category.{v, u} C] {X Y : SimplicialObject C} (f g : X Y) (h : ∀ (n : SimplexCategoryᵒᵖ), f.app n = g.app n) :
        f = g

        Face maps for a simplicial object.

        Equations
        Instances For

          Degeneracy maps for a simplicial object.

          Equations
          Instances For

            The diagonal of a simplex is the long edge of the simplex.

            Equations
            Instances For

              Isomorphisms from identities in ℕ.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.SimplicialObject.δ_comp_δ {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i j : Fin (n + 2)} (H : i j) :
                CategoryStruct.comp (X j.succ) (X i) = CategoryStruct.comp (X i.castSucc) (X j)

                The generic case of the first simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_δ_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i j : Fin (n + 2)} (H : i j) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X j.succ) (CategoryStruct.comp (X i) h) = CategoryStruct.comp (X i.castSucc) (CategoryStruct.comp (X j) h)
                theorem CategoryTheory.SimplicialObject.δ_comp_δ' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) :
                CategoryStruct.comp (X j) (X i) = CategoryStruct.comp (X i.castSucc) (X (j.pred ))
                theorem CategoryTheory.SimplicialObject.δ_comp_δ'_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X j) (CategoryStruct.comp (X i) h) = CategoryStruct.comp (X i.castSucc) (CategoryStruct.comp (X (j.pred )) h)
                theorem CategoryTheory.SimplicialObject.δ_comp_δ'' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) :
                CategoryStruct.comp (X j.succ) (X (i.castLT )) = CategoryStruct.comp (X i) (X j)
                theorem CategoryTheory.SimplicialObject.δ_comp_δ''_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X j.succ) (CategoryStruct.comp (X (i.castLT )) h) = CategoryStruct.comp (X i) (CategoryStruct.comp (X j) h)
                theorem CategoryTheory.SimplicialObject.δ_comp_δ_self {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} :
                CategoryStruct.comp (X i.castSucc) (X i) = CategoryStruct.comp (X i.succ) (X i)

                The special case of the first simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_δ_self_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X i.castSucc) (CategoryStruct.comp (X i) h) = CategoryStruct.comp (X i.succ) (CategoryStruct.comp (X i) h)
                theorem CategoryTheory.SimplicialObject.δ_comp_δ_self' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 3)} {i : Fin (n + 2)} (H : j = i.castSucc) :
                CategoryStruct.comp (X j) (X i) = CategoryStruct.comp (X i.succ) (X i)
                theorem CategoryTheory.SimplicialObject.δ_comp_δ_self'_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 3)} {i : Fin (n + 2)} (H : j = i.castSucc) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X j) (CategoryStruct.comp (X i) h) = CategoryStruct.comp (X i.succ) (CategoryStruct.comp (X i) h)
                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_le {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i j.castSucc) :
                CategoryStruct.comp (X j.succ) (X i.castSucc) = CategoryStruct.comp (X i) (X j)

                The second simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_le_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i j.castSucc) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk (n + 1))) Z) :
                CategoryStruct.comp (X j.succ) (CategoryStruct.comp (X i.castSucc) h) = CategoryStruct.comp (X i) (CategoryStruct.comp (X j) h)

                The first part of the third simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_σ_self_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 1)} {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X i) (CategoryStruct.comp (X i.castSucc) h) = h
                theorem CategoryTheory.SimplicialObject.δ_comp_σ_self' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.castSucc) :
                theorem CategoryTheory.SimplicialObject.δ_comp_σ_self'_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.castSucc) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X i) (CategoryStruct.comp (X j) h) = h

                The second part of the third simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_σ_succ_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 1)} {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X i) (CategoryStruct.comp (X i.succ) h) = h
                theorem CategoryTheory.SimplicialObject.δ_comp_σ_succ' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.succ) :
                theorem CategoryTheory.SimplicialObject.δ_comp_σ_succ'_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.succ) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk n)) Z) :
                CategoryStruct.comp (X i) (CategoryStruct.comp (X j) h) = h
                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) :
                CategoryStruct.comp (X j.castSucc) (X i.succ) = CategoryStruct.comp (X i) (X j)

                The fourth simplicial identity

                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk (n + 1))) Z) :
                CategoryStruct.comp (X j.castSucc) (CategoryStruct.comp (X i.succ) h) = CategoryStruct.comp (X i) (CategoryStruct.comp (X j) h)
                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt' {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) :
                CategoryStruct.comp (X j) (X i) = CategoryStruct.comp (X (i.pred )) (X (j.castLT ))
                theorem CategoryTheory.SimplicialObject.δ_comp_σ_of_gt'_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk (n + 1))) Z) :
                CategoryStruct.comp (X j) (CategoryStruct.comp (X i) h) = CategoryStruct.comp (X (i.pred )) (CategoryStruct.comp (X (j.castLT )) h)
                theorem CategoryTheory.SimplicialObject.σ_comp_σ {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i j : Fin (n + 1)} (H : i j) :
                CategoryStruct.comp (X j) (X i.castSucc) = CategoryStruct.comp (X i) (X j.succ)

                The fifth simplicial identity

                theorem CategoryTheory.SimplicialObject.σ_comp_σ_assoc {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) {n : } {i j : Fin (n + 1)} (H : i j) {Z : C} (h : X.obj (Opposite.op (SimplexCategory.mk (n + 1 + 1))) Z) :
                CategoryStruct.comp (X j) (CategoryStruct.comp (X i.castSucc) h) = CategoryStruct.comp (X i) (CategoryStruct.comp (X j.succ) h)
                @[simp]
                theorem CategoryTheory.SimplicialObject.δ_naturality {C : Type u} [Category.{v, u} C] {X' X : SimplicialObject C} (f : X X') {n : } (i : Fin (n + 2)) :
                @[simp]
                theorem CategoryTheory.SimplicialObject.σ_naturality {C : Type u} [Category.{v, u} C] {X' X : SimplicialObject C} (f : X X') {n : } (i : Fin (n + 1)) :
                @[simp]
                @[simp]
                theorem CategoryTheory.SimplicialObject.whiskering_obj_obj_obj (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor SimplexCategoryᵒᵖ C) (X : SimplexCategoryᵒᵖ) :
                (((whiskering C D).obj H).obj F).obj X = H.obj (F.obj X)
                @[simp]
                theorem CategoryTheory.SimplicialObject.whiskering_obj_map_app (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) {X✝ Y✝ : Functor SimplexCategoryᵒᵖ C} (α : X✝ Y✝) (X : SimplexCategoryᵒᵖ) :
                (((whiskering C D).obj H).map α).app X = H.map (α.app X)
                @[simp]
                theorem CategoryTheory.SimplicialObject.whiskering_obj_obj_map (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor SimplexCategoryᵒᵖ C) {X✝ Y✝ : SimplexCategoryᵒᵖ} (f : X✝ Y✝) :
                (((whiskering C D).obj H).obj F).map f = H.map (F.map f)
                @[simp]
                theorem CategoryTheory.SimplicialObject.whiskering_map_app_app (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (F : Functor SimplexCategoryᵒᵖ C) (c : SimplexCategoryᵒᵖ) :
                (((whiskering C D).map τ).app F).app c = τ.app (F.obj c)

                Functor composition induces a functor on truncated simplicial objects.

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.SimplicialObject.Truncated.whiskering_obj_obj_map (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor (SimplexCategory.Truncated n)ᵒᵖ C) {X✝ Y✝ : (SimplexCategory.Truncated n)ᵒᵖ} (f : X✝ Y✝) :
                  (((whiskering C D).obj H).obj F).map f = H.map (F.map f)
                  @[simp]
                  theorem CategoryTheory.SimplicialObject.Truncated.whiskering_map_app_app (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (F : Functor (SimplexCategory.Truncated n)ᵒᵖ C) (c : (SimplexCategory.Truncated n)ᵒᵖ) :
                  (((whiskering C D).map τ).app F).app c = τ.app (F.obj c)
                  @[simp]
                  @[simp]
                  theorem CategoryTheory.SimplicialObject.Truncated.whiskering_obj_map_app (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) {X✝ Y✝ : Functor (SimplexCategory.Truncated n)ᵒᵖ C} (α : X✝ Y✝) (X : (SimplexCategory.Truncated n)ᵒᵖ) :
                  (((whiskering C D).obj H).map α).app X = H.map (α.app X)

                  The adjunction between the n-skeleton and n-truncation.

                  Equations
                  Instances For

                    The adjunction between n-truncation and the n-coskeleton.

                    Equations
                    Instances For
                      noncomputable def CategoryTheory.SimplicialObject.Truncated.cosk.fullyFaithful {C : Type u} [Category.{v, u} C] (n : ) [∀ (F : Functor (SimplexCategory.Truncated n)ᵒᵖ C), (SimplexCategory.Truncated.inclusion n).op.HasRightKanExtension F] [∀ (F : Functor (SimplexCategory.Truncated n)ᵒᵖ C), (SimplexCategory.Truncated.inclusion n).op.HasPointwiseRightKanExtension F] :
                      (Truncated.cosk n).FullyFaithful

                      Since Truncated.inclusion is fully faithful, so is right Kan extension along it.

                      Equations
                      Instances For
                        noncomputable def CategoryTheory.SimplicialObject.Truncated.sk.fullyFaithful {C : Type u} [Category.{v, u} C] (n : ) [∀ (F : Functor (SimplexCategory.Truncated n)ᵒᵖ C), (SimplexCategory.Truncated.inclusion n).op.HasLeftKanExtension F] [∀ (F : Functor (SimplexCategory.Truncated n)ᵒᵖ C), (SimplexCategory.Truncated.inclusion n).op.HasPointwiseLeftKanExtension F] :
                        (Truncated.sk n).FullyFaithful

                        Since Truncated.inclusion is fully faithful, so is left Kan extension along it.

                        Equations
                        Instances For
                          @[reducible, inline]

                          The constant simplicial object is the constant functor.

                          Equations
                          Instances For
                            @[simp]
                            theorem CategoryTheory.SimplicialObject.instCategoryAugmented_comp_right (C : Type u) [Category.{v, u} C] {X✝ Y✝ Z✝ : Comma (Functor.id (SimplicialObject C)) (const C)} (f : X✝ Y✝) (g : Y✝ Z✝) :
                            (CategoryStruct.comp f g).right = CategoryStruct.comp f.right g.right
                            @[simp]
                            theorem CategoryTheory.SimplicialObject.instCategoryAugmented_comp_left_app (C : Type u) [Category.{v, u} C] {X✝ Y✝ Z✝ : Comma (Functor.id (SimplicialObject C)) (const C)} (f : X✝ Y✝) (g : Y✝ Z✝) (X : SimplexCategoryᵒᵖ) :
                            (CategoryStruct.comp f g).left.app X = CategoryStruct.comp (f.left.app X) (g.left.app X)
                            theorem CategoryTheory.SimplicialObject.Augmented.hom_ext {C : Type u} [Category.{v, u} C] {X Y : Augmented C} (f g : X Y) (h₁ : f.left = g.left) (h₂ : f.right = g.right) :
                            f = g
                            @[simp]
                            theorem CategoryTheory.SimplicialObject.Augmented.drop_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Comma (Functor.id (SimplicialObject C)) (const C)} (f : X✝ Y✝) :
                            drop.map f = f.left
                            @[simp]
                            theorem CategoryTheory.SimplicialObject.Augmented.point_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Comma (Functor.id (SimplicialObject C)) (const C)} (f : X✝ Y✝) :
                            point.map f = f.right

                            The functor from augmented objects to arrows.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CategoryTheory.SimplicialObject.Augmented.toArrow_map_left {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Augmented C} (η : X✝ Y✝) :
                              (toArrow.map η).left = (drop.map η).app (Opposite.op (SimplexCategory.mk 0))
                              @[simp]
                              theorem CategoryTheory.SimplicialObject.Augmented.toArrow_map_right {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Augmented C} (η : X✝ Y✝) :
                              (toArrow.map η).right = point.map η

                              The compatibility of a morphism with the augmentation, on 0-simplices

                              Functor composition induces a functor on augmented simplicial objects.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                Functor composition induces a functor on augmented simplicial objects.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  @[simp]
                                  theorem CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_right (C : Type u) [Category.{v, u} C] (D : Type u') [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (η : X✝ Y✝) (A : Augmented C) :
                                  (((whiskering C D).map η).app A).right = η.app (point.obj A)
                                  @[simp]
                                  theorem CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_left (C : Type u) [Category.{v, u} C] (D : Type u') [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (η : X✝ Y✝) (A : Augmented C) :
                                  (((whiskering C D).map η).app A).left = whiskerLeft (drop.obj A) η
                                  def CategoryTheory.SimplicialObject.augment {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp (X.map g₁.op) f = CategoryStruct.comp (X.map g₂.op) f) :

                                  Augment a simplicial object with an object.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.SimplicialObject.augment_hom_app {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp (X.map g₁.op) f = CategoryStruct.comp (X.map g₂.op) f) (x✝ : SimplexCategoryᵒᵖ) :
                                    (X.augment X₀ f w).hom.app x✝ = CategoryStruct.comp (X.map ((SimplexCategory.mk 0).const (Opposite.unop x✝) 0).op) f
                                    @[simp]
                                    theorem CategoryTheory.SimplicialObject.augment_right {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp (X.map g₁.op) f = CategoryStruct.comp (X.map g₂.op) f) :
                                    (X.augment X₀ f w).right = X₀
                                    @[simp]
                                    theorem CategoryTheory.SimplicialObject.augment_left {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp (X.map g₁.op) f = CategoryStruct.comp (X.map g₂.op) f) :
                                    (X.augment X₀ f w).left = X
                                    theorem CategoryTheory.SimplicialObject.augment_hom_zero {C : Type u} [Category.{v, u} C] (X : SimplicialObject C) (X₀ : C) (f : X.obj (Opposite.op (SimplexCategory.mk 0)) X₀) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp (X.map g₁.op) f = CategoryStruct.comp (X.map g₂.op) f) :
                                    (X.augment X₀ f w).hom.app (Opposite.op (SimplexCategory.mk 0)) = f
                                    @[simp]
                                    theorem CategoryTheory.instCategoryCosimplicialObject_comp_app (C : Type u) [Category.{v, u} C] {X✝ Y✝ Z✝ : Functor SimplexCategory C} (α : X✝ Y✝) (β : Y✝ Z✝) (X : SimplexCategory) :
                                    (CategoryStruct.comp α β).app X = CategoryStruct.comp (α.app X) (β.app X)

                                    Pretty printer defined by notation3 command.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For

                                      X _[n] denotes the nth-term of the cosimplicial object X

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        theorem CategoryTheory.CosimplicialObject.hom_ext {C : Type u} [Category.{v, u} C] {X Y : CosimplicialObject C} (f g : X Y) (h : ∀ (n : SimplexCategory), f.app n = g.app n) :
                                        f = g

                                        Coface maps for a cosimplicial object.

                                        Equations
                                        Instances For

                                          Codegeneracy maps for a cosimplicial object.

                                          Equations
                                          Instances For

                                            Isomorphisms from identities in ℕ.

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.eqToIso_refl {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } (h : n = n) :
                                              X.eqToIso h = Iso.refl (X.obj (SimplexCategory.mk n))
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i j : Fin (n + 2)} (H : i j) :
                                              CategoryStruct.comp (X i) (X j.succ) = CategoryStruct.comp (X j) (X i.castSucc)

                                              The generic case of the first cosimplicial identity

                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i j : Fin (n + 2)} (H : i j) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1 + 1)) Z) :
                                              CategoryStruct.comp (X i) (CategoryStruct.comp (X j.succ) h) = CategoryStruct.comp (X j) (CategoryStruct.comp (X i.castSucc) h)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) :
                                              CategoryStruct.comp (X i) (X j) = CategoryStruct.comp (X (j.pred )) (X i.castSucc)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : i.castSucc < j) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1 + 1)) Z) :
                                              CategoryStruct.comp (X i) (CategoryStruct.comp (X j) h) = CategoryStruct.comp (X (j.pred )) (CategoryStruct.comp (X i.castSucc) h)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ'' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) :
                                              CategoryStruct.comp (X (i.castLT )) (X j.succ) = CategoryStruct.comp (X j) (X i)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ''_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : i j.castSucc) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1 + 1)) Z) :
                                              CategoryStruct.comp (X (i.castLT )) (CategoryStruct.comp (X j.succ) h) = CategoryStruct.comp (X j) (CategoryStruct.comp (X i) h)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ_self {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} :
                                              CategoryStruct.comp (X i) (X i.castSucc) = CategoryStruct.comp (X i) (X i.succ)

                                              The special case of the first cosimplicial identity

                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ_self_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {Z : C} (h : X.obj (SimplexCategory.mk (n + 1 + 1)) Z) :
                                              CategoryStruct.comp (X i) (CategoryStruct.comp (X i.castSucc) h) = CategoryStruct.comp (X i) (CategoryStruct.comp (X i.succ) h)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ_self' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : j = i.castSucc) :
                                              CategoryStruct.comp (X i) (X j) = CategoryStruct.comp (X i) (X i.succ)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_δ_self'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 3)} (H : j = i.castSucc) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1 + 1)) Z) :
                                              CategoryStruct.comp (X i) (CategoryStruct.comp (X j) h) = CategoryStruct.comp (X i) (CategoryStruct.comp (X i.succ) h)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_le {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i j.castSucc) :
                                              CategoryStruct.comp (X i.castSucc) (X j.succ) = CategoryStruct.comp (X j) (X i)

                                              The second cosimplicial identity

                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_le_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : i j.castSucc) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1)) Z) :
                                              CategoryStruct.comp (X i.castSucc) (CategoryStruct.comp (X j.succ) h) = CategoryStruct.comp (X j) (CategoryStruct.comp (X i) h)

                                              The first part of the third cosimplicial identity

                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_self_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 1)} {Z : C} (h : X.obj (SimplexCategory.mk n) Z) :
                                              CategoryStruct.comp (X i.castSucc) (CategoryStruct.comp (X i) h) = h
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_self' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.castSucc) :
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_self'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.castSucc) {Z : C} (h : X.obj (SimplexCategory.mk n) Z) :
                                              CategoryStruct.comp (X j) (CategoryStruct.comp (X i) h) = h

                                              The second part of the third cosimplicial identity

                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_succ_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 1)} {Z : C} (h : X.obj (SimplexCategory.mk n) Z) :
                                              CategoryStruct.comp (X i.succ) (CategoryStruct.comp (X i) h) = h
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_succ' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.succ) :
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_succ'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {j : Fin (n + 2)} {i : Fin (n + 1)} (H : j = i.succ) {Z : C} (h : X.obj (SimplexCategory.mk n) Z) :
                                              CategoryStruct.comp (X j) (CategoryStruct.comp (X i) h) = h
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) :
                                              CategoryStruct.comp (X i.succ) (X j.castSucc) = CategoryStruct.comp (X j) (X i)

                                              The fourth cosimplicial identity

                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 2)} {j : Fin (n + 1)} (H : j.castSucc < i) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1)) Z) :
                                              CategoryStruct.comp (X i.succ) (CategoryStruct.comp (X j.castSucc) h) = CategoryStruct.comp (X j) (CategoryStruct.comp (X i) h)
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt' {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) :
                                              CategoryStruct.comp (X i) (X j) = CategoryStruct.comp (X (j.castLT )) (X (i.pred ))
                                              theorem CategoryTheory.CosimplicialObject.δ_comp_σ_of_gt'_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i : Fin (n + 3)} {j : Fin (n + 2)} (H : j.succ < i) {Z : C} (h : X.obj (SimplexCategory.mk (n + 1)) Z) :
                                              CategoryStruct.comp (X i) (CategoryStruct.comp (X j) h) = CategoryStruct.comp (X (j.castLT )) (CategoryStruct.comp (X (i.pred )) h)
                                              theorem CategoryTheory.CosimplicialObject.σ_comp_σ {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i j : Fin (n + 1)} (H : i j) :
                                              CategoryStruct.comp (X i.castSucc) (X j) = CategoryStruct.comp (X j.succ) (X i)

                                              The fifth cosimplicial identity

                                              theorem CategoryTheory.CosimplicialObject.σ_comp_σ_assoc {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) {n : } {i j : Fin (n + 1)} (H : i j) {Z : C} (h : X.obj (SimplexCategory.mk n) Z) :
                                              CategoryStruct.comp (X i.castSucc) (CategoryStruct.comp (X j) h) = CategoryStruct.comp (X j.succ) (CategoryStruct.comp (X i) h)
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.δ_naturality {C : Type u} [Category.{v, u} C] {X' X : CosimplicialObject C} (f : X X') {n : } (i : Fin (n + 2)) :
                                              CategoryStruct.comp (X i) (f.app (SimplexCategory.mk (n + 1))) = CategoryStruct.comp (f.app (SimplexCategory.mk n)) (X' i)
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.δ_naturality_assoc {C : Type u} [Category.{v, u} C] {X' X : CosimplicialObject C} (f : X X') {n : } (i : Fin (n + 2)) {Z : C} (h : X'.obj (SimplexCategory.mk (n + 1)) Z) :
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.σ_naturality {C : Type u} [Category.{v, u} C] {X' X : CosimplicialObject C} (f : X X') {n : } (i : Fin (n + 1)) :
                                              CategoryStruct.comp (X i) (f.app (SimplexCategory.mk n)) = CategoryStruct.comp (f.app (SimplexCategory.mk (n + 1))) (X' i)
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.σ_naturality_assoc {C : Type u} [Category.{v, u} C] {X' X : CosimplicialObject C} (f : X X') {n : } (i : Fin (n + 1)) {Z : C} (h : X'.obj (SimplexCategory.mk n) Z) :
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.whiskering_map_app_app (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (F : Functor SimplexCategory C) (c : SimplexCategory) :
                                              (((whiskering C D).map τ).app F).app c = τ.app (F.obj c)
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.whiskering_obj_obj_obj (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor SimplexCategory C) (X : SimplexCategory) :
                                              (((whiskering C D).obj H).obj F).obj X = H.obj (F.obj X)
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.whiskering_obj_obj_map (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor SimplexCategory C) {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
                                              (((whiskering C D).obj H).obj F).map f = H.map (F.map f)
                                              @[simp]
                                              theorem CategoryTheory.CosimplicialObject.whiskering_obj_map_app (C : Type u) [Category.{v, u} C] (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) {X✝ Y✝ : Functor SimplexCategory C} (α : X✝ Y✝) (X : SimplexCategory) :
                                              (((whiskering C D).obj H).map α).app X = H.map (α.app X)

                                              Functor composition induces a functor on truncated cosimplicial objects.

                                              Equations
                                              Instances For
                                                @[simp]
                                                theorem CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_obj_map (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor (SimplexCategory.Truncated n) C) {X✝ Y✝ : SimplexCategory.Truncated n} (f : X✝ Y✝) :
                                                (((whiskering C D).obj H).obj F).map f = H.map (F.map f)
                                                @[simp]
                                                theorem CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_obj_obj (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) (F : Functor (SimplexCategory.Truncated n) C) (X : SimplexCategory.Truncated n) :
                                                (((whiskering C D).obj H).obj F).obj X = H.obj (F.obj X)
                                                @[simp]
                                                theorem CategoryTheory.CosimplicialObject.Truncated.whiskering_obj_map_app (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] (H : Functor C D) {X✝ Y✝ : Functor (SimplexCategory.Truncated n) C} (α : X✝ Y✝) (X : SimplexCategory.Truncated n) :
                                                (((whiskering C D).obj H).map α).app X = H.map (α.app X)
                                                @[simp]
                                                theorem CategoryTheory.CosimplicialObject.Truncated.whiskering_map_app_app (C : Type u) [Category.{v, u} C] {n : } (D : Type u_1) [Category.{u_2, u_1} D] {X✝ Y✝ : Functor C D} (τ : X✝ Y✝) (F : Functor (SimplexCategory.Truncated n) C) (c : SimplexCategory.Truncated n) :
                                                (((whiskering C D).map τ).app F).app c = τ.app (F.obj c)
                                                @[simp]
                                                theorem CategoryTheory.CosimplicialObject.instCategoryAugmented_comp_left (C : Type u) [Category.{v, u} C] {X✝ Y✝ Z✝ : Comma (const C) (Functor.id (CosimplicialObject C))} (f : X✝ Y✝) (g : Y✝ Z✝) :
                                                (CategoryStruct.comp f g).left = CategoryStruct.comp f.left g.left
                                                @[simp]
                                                theorem CategoryTheory.CosimplicialObject.instCategoryAugmented_comp_right_app (C : Type u) [Category.{v, u} C] {X✝ Y✝ Z✝ : Comma (const C) (Functor.id (CosimplicialObject C))} (f : X✝ Y✝) (g : Y✝ Z✝) (X : SimplexCategory) :
                                                (CategoryStruct.comp f g).right.app X = CategoryStruct.comp (f.right.app X) (g.right.app X)
                                                theorem CategoryTheory.CosimplicialObject.Augmented.hom_ext {C : Type u} [Category.{v, u} C] {X Y : Augmented C} (f g : X Y) (h₁ : f.left = g.left) (h₂ : f.right = g.right) :
                                                f = g
                                                @[simp]
                                                theorem CategoryTheory.CosimplicialObject.Augmented.drop_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Comma (const C) (Functor.id (CosimplicialObject C))} (f : X✝ Y✝) :
                                                drop.map f = f.right
                                                @[simp]
                                                theorem CategoryTheory.CosimplicialObject.Augmented.point_map {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Comma (const C) (Functor.id (CosimplicialObject C))} (f : X✝ Y✝) :
                                                point.map f = f.left

                                                The functor from augmented objects to arrows.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Augmented C} (η : X✝ Y✝) :
                                                  (toArrow.map η).left = η.left
                                                  @[simp]
                                                  theorem CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right {C : Type u} [Category.{v, u} C] {X✝ Y✝ : Augmented C} (η : X✝ Y✝) :
                                                  (toArrow.map η).right = η.right.app (SimplexCategory.mk 0)

                                                  Functor composition induces a functor on augmented cosimplicial objects.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For

                                                    Functor composition induces a functor on augmented cosimplicial objects.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[simp]
                                                      theorem CategoryTheory.CosimplicialObject.Augmented.whiskering_map_app_left (C : Type u) [Category.{v, u} C] (D : Type u') [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (η : X✝ Y✝) (A : Augmented C) :
                                                      (((whiskering C D).map η).app A).left = η.app (point.obj A)
                                                      @[simp]
                                                      theorem CategoryTheory.CosimplicialObject.Augmented.whiskering_map_app_right (C : Type u) [Category.{v, u} C] (D : Type u') [Category.{v', u'} D] {X✝ Y✝ : Functor C D} (η : X✝ Y✝) (A : Augmented C) :
                                                      (((whiskering C D).map η).app A).right = whiskerLeft (drop.obj A) η
                                                      def CategoryTheory.CosimplicialObject.augment {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp f (X.map g₁) = CategoryStruct.comp f (X.map g₂)) :

                                                      Augment a cosimplicial object with an object.

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.CosimplicialObject.augment_left {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp f (X.map g₁) = CategoryStruct.comp f (X.map g₂)) :
                                                        (X.augment X₀ f w).left = X₀
                                                        @[simp]
                                                        theorem CategoryTheory.CosimplicialObject.augment_hom_app {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp f (X.map g₁) = CategoryStruct.comp f (X.map g₂)) (x✝ : SimplexCategory) :
                                                        (X.augment X₀ f w).hom.app x✝ = CategoryStruct.comp f (X.map ((SimplexCategory.mk 0).const x✝ 0))
                                                        @[simp]
                                                        theorem CategoryTheory.CosimplicialObject.augment_right {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp f (X.map g₁) = CategoryStruct.comp f (X.map g₂)) :
                                                        (X.augment X₀ f w).right = X
                                                        theorem CategoryTheory.CosimplicialObject.augment_hom_zero {C : Type u} [Category.{v, u} C] (X : CosimplicialObject C) (X₀ : C) (f : X₀ X.obj (SimplexCategory.mk 0)) (w : ∀ (i : SimplexCategory) (g₁ g₂ : SimplexCategory.mk 0 i), CategoryStruct.comp f (X.map g₁) = CategoryStruct.comp f (X.map g₂)) :
                                                        (X.augment X₀ f w).hom.app (SimplexCategory.mk 0) = f
                                                        @[simp]
                                                        theorem CategoryTheory.simplicialCosimplicialEquiv_functor_obj_map (C : Type u) [Category.{v, u} C] (F : (Functor SimplexCategoryᵒᵖ C)ᵒᵖ) {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
                                                        ((simplicialCosimplicialEquiv C).functor.obj F).map f = ((Opposite.unop F).map f.op).op
                                                        @[simp]
                                                        theorem CategoryTheory.simplicialCosimplicialEquiv_functor_map_app (C : Type u) [Category.{v, u} C] {X✝ Y✝ : (Functor SimplexCategoryᵒᵖ C)ᵒᵖ} (η : X✝ Y✝) (x✝ : SimplexCategory) :
                                                        ((simplicialCosimplicialEquiv C).functor.map η).app x✝ = (η.unop.app (Opposite.op x✝)).op
                                                        @[simp]
                                                        theorem CategoryTheory.cosimplicialSimplicialEquiv_inverse_map (C : Type u) [Category.{v, u} C] {X✝ Y✝ : Functor SimplexCategoryᵒᵖ Cᵒᵖ} (α : X✝ Y✝) :
                                                        (cosimplicialSimplicialEquiv C).inverse.map α = Quiver.Hom.op { app := fun (X : SimplexCategory) => (α.app (Opposite.op X)).unop, naturality := }
                                                        @[simp]
                                                        theorem CategoryTheory.cosimplicialSimplicialEquiv_functor_map_app (C : Type u) [Category.{v, u} C] {X✝ Y✝ : (Functor SimplexCategory C)ᵒᵖ} (α : X✝ Y✝) (X : SimplexCategoryᵒᵖ) :
                                                        ((cosimplicialSimplicialEquiv C).functor.map α).app X = (α.unop.app (Opposite.unop X)).op
                                                        @[simp]
                                                        theorem CategoryTheory.cosimplicialSimplicialEquiv_functor_obj_map (C : Type u) [Category.{v, u} C] (F : (Functor SimplexCategory C)ᵒᵖ) {X✝ Y✝ : SimplexCategoryᵒᵖ} (f : X✝ Y✝) :
                                                        ((cosimplicialSimplicialEquiv C).functor.obj F).map f = ((Opposite.unop F).map f.unop).op

                                                        Construct an augmented cosimplicial object in the opposite category from an augmented simplicial object.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem CategoryTheory.SimplicialObject.Augmented.rightOp_hom_app {C : Type u} [Category.{v, u} C] (X : Augmented C) (x✝ : SimplexCategory) :
                                                          X.rightOp.hom.app x✝ = (X.hom.app (Opposite.op x✝)).op
                                                          @[simp]
                                                          theorem CategoryTheory.SimplicialObject.Augmented.rightOp_right_map {C : Type u} [Category.{v, u} C] (X : Augmented C) {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
                                                          X.rightOp.right.map f = (X.left.map f.op).op
                                                          @[simp]
                                                          theorem CategoryTheory.SimplicialObject.Augmented.rightOp_right_obj {C : Type u} [Category.{v, u} C] (X : Augmented C) (X✝ : SimplexCategory) :
                                                          X.rightOp.right.obj X✝ = Opposite.op (X.left.obj (Opposite.op X✝))

                                                          Construct an augmented simplicial object from an augmented cosimplicial object in the opposite category.

                                                          Equations
                                                          Instances For
                                                            @[simp]
                                                            theorem CategoryTheory.CosimplicialObject.Augmented.leftOp_left_map {C : Type u} [Category.{v, u} C] (X : Augmented Cᵒᵖ) {X✝ Y✝ : SimplexCategoryᵒᵖ} (f : X✝ Y✝) :
                                                            X.leftOp.left.map f = (X.right.map f.unop).unop
                                                            @[simp]
                                                            theorem CategoryTheory.CosimplicialObject.Augmented.leftOp_hom_app {C : Type u} [Category.{v, u} C] (X : Augmented Cᵒᵖ) (X✝ : SimplexCategoryᵒᵖ) :
                                                            X.leftOp.hom.app X✝ = (X.hom.app (Opposite.unop X✝)).unop

                                                            Converting an augmented simplicial object to an augmented cosimplicial object and back is isomorphic to the given object.

                                                            Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_hom_left_app {C : Type u} [Category.{v, u} C] (X : Augmented C) (X✝ : SimplexCategoryᵒᵖ) :
                                                              X.rightOpLeftOpIso.hom.left.app X✝ = CategoryStruct.id (X.left.obj X✝)
                                                              @[simp]
                                                              theorem CategoryTheory.SimplicialObject.Augmented.rightOpLeftOpIso_inv_left_app {C : Type u} [Category.{v, u} C] (X : Augmented C) (X✝ : SimplexCategoryᵒᵖ) :
                                                              X.rightOpLeftOpIso.inv.left.app X✝ = CategoryStruct.id (X.left.obj X✝)

                                                              Converting an augmented cosimplicial object to an augmented simplicial object and back is isomorphic to the given object.

                                                              Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_hom_right_app {C : Type u} [Category.{v, u} C] (X : Augmented Cᵒᵖ) (X✝ : SimplexCategory) :
                                                                X.leftOpRightOpIso.hom.right.app X✝ = CategoryStruct.id (X.right.obj X✝)
                                                                @[simp]
                                                                theorem CategoryTheory.CosimplicialObject.Augmented.leftOpRightOpIso_inv_right_app {C : Type u} [Category.{v, u} C] (X : Augmented Cᵒᵖ) (X✝ : SimplexCategory) :
                                                                X.leftOpRightOpIso.inv.right.app X✝ = CategoryStruct.id (X.right.obj X✝)

                                                                A functorial version of SimplicialObject.Augmented.rightOp.

                                                                Equations
                                                                • One or more equations did not get rendered due to their size.
                                                                Instances For
                                                                  @[simp]

                                                                  A functorial version of Cosimplicial_object.Augmented.leftOp.

                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem CategoryTheory.cosimplicialToSimplicialAugmented_map (C : Type u) [Category.{v, u} C] {X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ} (f : X✝ Y✝) :
                                                                    (cosimplicialToSimplicialAugmented C).map f = Quiver.Hom.op { left := NatTrans.leftOp f.right, right := f.left.unop, w := }

                                                                    The contravariant categorical equivalence between augmented simplicial objects and augmented cosimplicial objects in the opposite category.

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For