Documentation

Mathlib.CategoryTheory.Functor.KanExtension.Pointwise

Pointwise Kan extensions #

In this file, we define the notion of pointwise (left) Kan extension. Given two functors L : C ⥤ D and F : C ⥤ H, and E : LeftExtension L F, we introduce a cocone E.coconeAt Y for the functor CostructuredArrow.proj L Y ⋙ F : CostructuredArrow L Y ⥤ H the point of which is E.right.obj Y, and the type E.IsPointwiseLeftKanExtensionAt Y which expresses that E.coconeAt Y is colimit. When this holds for all Y : D, we may say that E is a pointwise left Kan extension (E.IsPointwiseLeftKanExtension).

Conversely, when CostructuredArrow.proj L Y ⋙ F has a colimit, we say that F has a pointwise left Kan extension at Y : D (HasPointwiseLeftKanExtensionAt L F Y), and if this holds for all Y : D, we construct a functor pointwiseLeftKanExtension L F : D ⥤ H and show it is a pointwise Kan extension.

A dual API for pointwise right Kan extension is also formalized.

References #

@[reducible, inline]

The condition that a functor F has a pointwise left Kan extension along L at Y. It means that the functor CostructuredArrow.proj L Y ⋙ F : CostructuredArrow L Y ⥤ H has a colimit.

Equations
Instances For
    @[reducible, inline]

    The condition that a functor F has a pointwise left Kan extension along L: it means that it has a pointwise left Kan extension at any object.

    Equations
    • L.HasPointwiseLeftKanExtension F = ∀ (Y : D), L.HasPointwiseLeftKanExtensionAt F Y
    Instances For
      @[reducible, inline]

      The condition that a functor F has a pointwise right Kan extension along L at Y. It means that the functor StructuredArrow.proj Y L ⋙ F : StructuredArrow Y L ⥤ H has a limit.

      Equations
      Instances For
        @[reducible, inline]

        The condition that a functor F has a pointwise right Kan extension along L: it means that it has a pointwise right Kan extension at any object.

        Equations
        • L.HasPointwiseRightKanExtension F = ∀ (Y : D), L.HasPointwiseRightKanExtensionAt F Y
        Instances For
          def CategoryTheory.Functor.LeftExtension.coconeAt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.LeftExtension F) (Y : D) :

          The cocone for CostructuredArrow.proj L Y ⋙ F attached to E : LeftExtension L F. The point of this cocone is E.right.obj Y

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.Functor.LeftExtension.coconeAt_pt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.LeftExtension F) (Y : D) :
            (E.coconeAt Y).pt = E.right.obj Y
            @[simp]
            theorem CategoryTheory.Functor.LeftExtension.coconeAt_ι_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.LeftExtension F) (Y : D) (g : CostructuredArrow L Y) :
            (E.coconeAt Y).app g = CategoryStruct.comp (E.hom.app g.left) (E.right.map g.hom)
            def CategoryTheory.Functor.LeftExtension.coconeAtFunctor {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (Y : D) :
            Functor (L.LeftExtension F) (Limits.Cocone ((CostructuredArrow.proj L Y).comp F))

            The cocones for CostructuredArrow.proj L Y ⋙ F, as a functor from LeftExtension L F.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.Functor.LeftExtension.coconeAtFunctor_map_hom {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (Y : D) {E E' : L.LeftExtension F} (φ : E E') :
              ((coconeAtFunctor L F Y).map φ).hom = φ.right.app Y
              @[simp]
              theorem CategoryTheory.Functor.LeftExtension.coconeAtFunctor_obj {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (Y : D) (E : L.LeftExtension F) :
              (coconeAtFunctor L F Y).obj E = E.coconeAt Y
              def CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.LeftExtension F) (Y : D) :
              Type (max (max (max u_1 u_5) u_3) u_6)

              A left extension E : LeftExtension L F is a pointwise left Kan extension at Y when E.coconeAt Y is a colimit cocone.

              Equations
              Instances For
                theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.hasPointwiseLeftKanExtensionAt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} {Y : D} (h : E.IsPointwiseLeftKanExtensionAt Y) :
                L.HasPointwiseLeftKanExtensionAt F Y
                theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isIso_hom_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.LeftExtension F) {X : C} (h : E.IsPointwiseLeftKanExtensionAt (L.obj X)) [L.Full] [L.Faithful] :
                IsIso (E.hom.app X)
                noncomputable def CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.isoColimit {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} {Y : D} (h : E.IsPointwiseLeftKanExtensionAt Y) [Limits.HasColimit ((CostructuredArrow.proj L Y).comp F)] :
                E.right.obj Y Limits.colimit ((CostructuredArrow.proj L Y).comp F)

                A pointwise left Kan extension of F along L applied to an object Y is isomorphic to colimit (CostructuredArrow.proj L Y ⋙ F).

                Equations
                Instances For
                  @[simp]
                  theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} {Y : D} (h : E.IsPointwiseLeftKanExtensionAt Y) [Limits.HasColimit ((CostructuredArrow.proj L Y).comp F)] (g : CostructuredArrow L Y) :
                  CategoryStruct.comp (Limits.colimit.ι ((CostructuredArrow.proj L Y).comp F) g) h.isoColimit.inv = CategoryStruct.comp (E.hom.app g.left) (E.right.map g.hom)
                  @[simp]
                  theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_inv_assoc {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} {Y : D} (h : E.IsPointwiseLeftKanExtensionAt Y) [Limits.HasColimit ((CostructuredArrow.proj L Y).comp F)] (g : CostructuredArrow L Y) {Z : H} (h✝ : E.right.obj Y Z) :
                  CategoryStruct.comp (Limits.colimit.ι ((CostructuredArrow.proj L Y).comp F) g) (CategoryStruct.comp h.isoColimit.inv h✝) = CategoryStruct.comp (E.hom.app g.left) (CategoryStruct.comp (E.right.map g.hom) h✝)
                  @[simp]
                  theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} {Y : D} (h : E.IsPointwiseLeftKanExtensionAt Y) [Limits.HasColimit ((CostructuredArrow.proj L Y).comp F)] (g : CostructuredArrow L Y) :
                  CategoryStruct.comp (E.hom.app g.left) (CategoryStruct.comp (E.right.map g.hom) h.isoColimit.hom) = Limits.colimit.ι ((CostructuredArrow.proj L Y).comp F) g
                  @[simp]
                  theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtensionAt.ι_isoColimit_hom_assoc {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} {Y : D} (h : E.IsPointwiseLeftKanExtensionAt Y) [Limits.HasColimit ((CostructuredArrow.proj L Y).comp F)] (g : CostructuredArrow L Y) {Z : H} (h✝ : Limits.colimit ((CostructuredArrow.proj L Y).comp F) Z) :
                  CategoryStruct.comp (E.hom.app g.left) (CategoryStruct.comp (E.right.map g.hom) (CategoryStruct.comp h.isoColimit.hom h✝)) = CategoryStruct.comp (Limits.colimit.ι ((CostructuredArrow.proj L Y).comp F) g) h✝
                  @[reducible, inline]
                  abbrev CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.LeftExtension F) :
                  Type (max (max (max (max u_2 u_6) u_5) u_3) u_1)

                  A left extension E : LeftExtension L F is a pointwise left Kan extension when it is a pointwise left Kan extension at any object.

                  Equations
                  • E.IsPointwiseLeftKanExtension = ((Y : D) → E.IsPointwiseLeftKanExtensionAt Y)
                  Instances For
                    def CategoryTheory.Functor.LeftExtension.isPointwiseLeftKanExtensionAtEquivOfIso {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E E' : L.LeftExtension F} (e : E E') (Y : D) :
                    E.IsPointwiseLeftKanExtensionAt Y E'.IsPointwiseLeftKanExtensionAt Y

                    If two left extensions E and E' are isomorphic, E is a pointwise left Kan extension at Y iff E' is.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      def CategoryTheory.Functor.LeftExtension.isPointwiseLeftKanExtensionEquivOfIso {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E E' : L.LeftExtension F} (e : E E') :
                      E.IsPointwiseLeftKanExtension E'.IsPointwiseLeftKanExtension

                      If two left extensions E and E' are isomorphic, E is a pointwise left Kan extension iff E' is.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.hasPointwiseLeftKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} (h : E.IsPointwiseLeftKanExtension) :
                        L.HasPointwiseLeftKanExtension F
                        def CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.homFrom {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} (h : E.IsPointwiseLeftKanExtension) (G : L.LeftExtension F) :
                        E G

                        The (unique) morphism from a pointwise left Kan extension.

                        Equations
                        Instances For
                          theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.hom_ext {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} (h : E.IsPointwiseLeftKanExtension) {G : L.LeftExtension F} {f₁ f₂ : E G} :
                          f₁ = f₂
                          def CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isUniversal {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} (h : E.IsPointwiseLeftKanExtension) :

                          A pointwise left Kan extension is universal, i.e. it is a left Kan extension.

                          Equations
                          Instances For
                            theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isLeftKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} (h : E.IsPointwiseLeftKanExtension) :
                            E.right.IsLeftKanExtension E.hom
                            theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.hasLeftKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} (h : E.IsPointwiseLeftKanExtension) :
                            L.HasLeftKanExtension F
                            theorem CategoryTheory.Functor.LeftExtension.IsPointwiseLeftKanExtension.isIso_hom {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.LeftExtension F} (h : E.IsPointwiseLeftKanExtension) [L.Full] [L.Faithful] :
                            IsIso E.hom
                            def CategoryTheory.Functor.RightExtension.coneAt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.RightExtension F) (Y : D) :

                            The cone for StructuredArrow.proj Y L ⋙ F attached to E : RightExtension L F. The point of this cone is E.left.obj Y

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem CategoryTheory.Functor.RightExtension.coneAt_pt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.RightExtension F) (Y : D) :
                              (E.coneAt Y).pt = E.left.obj Y
                              @[simp]
                              theorem CategoryTheory.Functor.RightExtension.coneAt_π_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.RightExtension F) (Y : D) (g : StructuredArrow Y L) :
                              (E.coneAt Y).app g = CategoryStruct.comp (E.left.map g.hom) (E.hom.app g.right)
                              def CategoryTheory.Functor.RightExtension.coneAtFunctor {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (Y : D) :
                              Functor (L.RightExtension F) (Limits.Cone ((StructuredArrow.proj Y L).comp F))

                              The cones for StructuredArrow.proj Y L ⋙ F, as a functor from RightExtension L F.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Functor.RightExtension.coneAtFunctor_obj {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (Y : D) (E : L.RightExtension F) :
                                (coneAtFunctor L F Y).obj E = E.coneAt Y
                                @[simp]
                                theorem CategoryTheory.Functor.RightExtension.coneAtFunctor_map_hom {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (Y : D) {E E' : L.RightExtension F} (φ : E E') :
                                ((coneAtFunctor L F Y).map φ).hom = φ.left.app Y
                                def CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.RightExtension F) (Y : D) :
                                Type (max (max (max u_1 u_5) u_3) u_6)

                                A right extension E : RightExtension L F is a pointwise right Kan extension at Y when E.coneAt Y is a limit cone.

                                Equations
                                Instances For
                                  theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.hasPointwiseRightKanExtensionAt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} {Y : D} (h : E.IsPointwiseRightKanExtensionAt Y) :
                                  L.HasPointwiseRightKanExtensionAt F Y
                                  theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isIso_hom_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.RightExtension F) {X : C} (h : E.IsPointwiseRightKanExtensionAt (L.obj X)) [L.Full] [L.Faithful] :
                                  IsIso (E.hom.app X)
                                  noncomputable def CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} {Y : D} (h : E.IsPointwiseRightKanExtensionAt Y) [Limits.HasLimit ((StructuredArrow.proj Y L).comp F)] :
                                  E.left.obj Y Limits.limit ((StructuredArrow.proj Y L).comp F)

                                  A pointwise right Kan extension of F along L applied to an object Y is isomorphic to limit (StructuredArrow.proj Y L ⋙ F).

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} {Y : D} (h : E.IsPointwiseRightKanExtensionAt Y) [Limits.HasLimit ((StructuredArrow.proj Y L).comp F)] (g : StructuredArrow Y L) :
                                    CategoryStruct.comp h.isoLimit.hom (Limits.limit.π ((StructuredArrow.proj Y L).comp F) g) = CategoryStruct.comp (E.left.map g.hom) (E.hom.app g.right)
                                    @[simp]
                                    theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_hom_π_assoc {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} {Y : D} (h : E.IsPointwiseRightKanExtensionAt Y) [Limits.HasLimit ((StructuredArrow.proj Y L).comp F)] (g : StructuredArrow Y L) {Z : H} (h✝ : F.obj ((StructuredArrow.proj Y L).obj g) Z) :
                                    CategoryStruct.comp h.isoLimit.hom (CategoryStruct.comp (Limits.limit.π ((StructuredArrow.proj Y L).comp F) g) h✝) = CategoryStruct.comp (E.left.map g.hom) (CategoryStruct.comp (E.hom.app g.right) h✝)
                                    @[simp]
                                    theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} {Y : D} (h : E.IsPointwiseRightKanExtensionAt Y) [Limits.HasLimit ((StructuredArrow.proj Y L).comp F)] (g : StructuredArrow Y L) :
                                    CategoryStruct.comp h.isoLimit.inv (CategoryStruct.comp (E.left.map g.hom) (E.hom.app g.right)) = Limits.limit.π ((StructuredArrow.proj Y L).comp F) g
                                    @[simp]
                                    theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtensionAt.isoLimit_inv_π_assoc {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} {Y : D} (h : E.IsPointwiseRightKanExtensionAt Y) [Limits.HasLimit ((StructuredArrow.proj Y L).comp F)] (g : StructuredArrow Y L) {Z : H} (h✝ : ((fromPUnit F).obj E.right).obj g.right Z) :
                                    CategoryStruct.comp h.isoLimit.inv (CategoryStruct.comp (E.left.map g.hom) (CategoryStruct.comp (E.hom.app g.right) h✝)) = CategoryStruct.comp (Limits.limit.π ((StructuredArrow.proj Y L).comp F) g) h✝
                                    @[reducible, inline]
                                    abbrev CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} (E : L.RightExtension F) :
                                    Type (max (max (max (max u_2 u_6) u_5) u_3) u_1)

                                    A right extension E : RightExtension L F is a pointwise right Kan extension when it is a pointwise right Kan extension at any object.

                                    Equations
                                    • E.IsPointwiseRightKanExtension = ((Y : D) → E.IsPointwiseRightKanExtensionAt Y)
                                    Instances For
                                      def CategoryTheory.Functor.RightExtension.isPointwiseRightKanExtensionAtEquivOfIso {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E E' : L.RightExtension F} (e : E E') (Y : D) :
                                      E.IsPointwiseRightKanExtensionAt Y E'.IsPointwiseRightKanExtensionAt Y

                                      If two right extensions E and E' are isomorphic, E is a pointwise right Kan extension at Y iff E' is.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        def CategoryTheory.Functor.RightExtension.isPointwiseRightKanExtensionEquivOfIso {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E E' : L.RightExtension F} (e : E E') :
                                        E.IsPointwiseRightKanExtension E'.IsPointwiseRightKanExtension

                                        If two right extensions E and E' are isomorphic, E is a pointwise right Kan extension iff E' is.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.hasPointwiseRightKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} (h : E.IsPointwiseRightKanExtension) :
                                          L.HasPointwiseRightKanExtension F
                                          def CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.homTo {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} (h : E.IsPointwiseRightKanExtension) (G : L.RightExtension F) :
                                          G E

                                          The (unique) morphism to a pointwise right Kan extension.

                                          Equations
                                          Instances For
                                            theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.hom_ext {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} (h : E.IsPointwiseRightKanExtension) {G : L.RightExtension F} {f₁ f₂ : G E} :
                                            f₁ = f₂
                                            def CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isUniversal {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} (h : E.IsPointwiseRightKanExtension) :

                                            A pointwise right Kan extension is universal, i.e. it is a right Kan extension.

                                            Equations
                                            Instances For
                                              theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isRightKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} (h : E.IsPointwiseRightKanExtension) :
                                              E.left.IsRightKanExtension E.hom
                                              theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.hasRightKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} (h : E.IsPointwiseRightKanExtension) :
                                              L.HasRightKanExtension F
                                              theorem CategoryTheory.Functor.RightExtension.IsPointwiseRightKanExtension.isIso_hom {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} {E : L.RightExtension F} (h : E.IsPointwiseRightKanExtension) [L.Full] [L.Faithful] :
                                              IsIso E.hom
                                              noncomputable def CategoryTheory.Functor.pointwiseLeftKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] :

                                              The constructed pointwise left Kan extension when HasPointwiseLeftKanExtension L F holds.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                @[simp]
                                                theorem CategoryTheory.Functor.pointwiseLeftKanExtension_map {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] {Y₁ Y₂ : D} (f : Y₁ Y₂) :
                                                (L.pointwiseLeftKanExtension F).map f = Limits.colimit.desc ((CostructuredArrow.proj L Y₁).comp F) { pt := Limits.colimit ((CostructuredArrow.proj L Y₂).comp F), ι := { app := fun (g : CostructuredArrow L Y₁) => Limits.colimit.ι ((CostructuredArrow.proj L Y₂).comp F) ((CostructuredArrow.map f).obj g), naturality := } }
                                                @[simp]
                                                theorem CategoryTheory.Functor.pointwiseLeftKanExtension_obj {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] (Y : D) :
                                                (L.pointwiseLeftKanExtension F).obj Y = Limits.colimit ((CostructuredArrow.proj L Y).comp F)
                                                noncomputable def CategoryTheory.Functor.pointwiseLeftKanExtensionUnit {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] :
                                                F L.comp (L.pointwiseLeftKanExtension F)

                                                The unit of the constructed pointwise left Kan extension when HasPointwiseLeftKanExtension L F holds.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[simp]
                                                  theorem CategoryTheory.Functor.pointwiseLeftKanExtensionUnit_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] (X : C) :
                                                  (L.pointwiseLeftKanExtensionUnit F).app X = Limits.colimit.ι ((CostructuredArrow.proj L (L.obj X)).comp F) (CostructuredArrow.mk (CategoryStruct.id (L.obj X)))
                                                  noncomputable def CategoryTheory.Functor.pointwiseLeftKanExtensionIsPointwiseLeftKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] :
                                                  (LeftExtension.mk (L.pointwiseLeftKanExtension F) (L.pointwiseLeftKanExtensionUnit F)).IsPointwiseLeftKanExtension

                                                  The functor pointwiseLeftKanExtension L F is a pointwise left Kan extension of F along L.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    noncomputable def CategoryTheory.Functor.pointwiseLeftKanExtensionIsUniversal {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] :
                                                    StructuredArrow.IsUniversal (LeftExtension.mk (L.pointwiseLeftKanExtension F) (L.pointwiseLeftKanExtensionUnit F))

                                                    The functor pointwiseLeftKanExtension L F is a left Kan extension of F along L.

                                                    Equations
                                                    • L.pointwiseLeftKanExtensionIsUniversal F = (L.pointwiseLeftKanExtensionIsPointwiseLeftKanExtension F).isUniversal
                                                    Instances For
                                                      instance CategoryTheory.Functor.instIsLeftKanExtensionPointwiseLeftKanExtensionPointwiseLeftKanExtensionUnit {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] :
                                                      (L.pointwiseLeftKanExtension F).IsLeftKanExtension (L.pointwiseLeftKanExtensionUnit F)
                                                      instance CategoryTheory.Functor.instHasLeftKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] :
                                                      L.HasLeftKanExtension F
                                                      def CategoryTheory.Functor.costructuredArrowMapCocone {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (G : Functor D H) (α : F L.comp G) (Y : D) :

                                                      An auxiliary cocone used in the lemma pointwiseLeftKanExtension_desc_app

                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        @[simp]
                                                        theorem CategoryTheory.Functor.costructuredArrowMapCocone_ι_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (G : Functor D H) (α : F L.comp G) (Y : D) (f : CostructuredArrow L Y) :
                                                        (L.costructuredArrowMapCocone F G α Y).app f = CategoryStruct.comp (α.app f.left) (G.map f.hom)
                                                        @[simp]
                                                        theorem CategoryTheory.Functor.costructuredArrowMapCocone_pt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (G : Functor D H) (α : F L.comp G) (Y : D) :
                                                        (L.costructuredArrowMapCocone F G α Y).pt = G.obj Y
                                                        @[simp]
                                                        theorem CategoryTheory.Functor.pointwiseLeftKanExtension_desc_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_6, u_1} C] [Category.{u_4, u_2} D] [Category.{u_5, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseLeftKanExtension F] (G : Functor D H) (α : F L.comp G) (Y : D) :
                                                        ((L.pointwiseLeftKanExtension F).descOfIsLeftKanExtension (L.pointwiseLeftKanExtensionUnit F) G α).app Y = Limits.colimit.desc ((CostructuredArrow.proj L Y).comp F) (L.costructuredArrowMapCocone F G α Y)
                                                        noncomputable def CategoryTheory.Functor.isPointwiseLeftKanExtensionOfIsLeftKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} [L.HasPointwiseLeftKanExtension F] (F' : Functor D H) (α : F L.comp F') [F'.IsLeftKanExtension α] :
                                                        (LeftExtension.mk F' α).IsPointwiseLeftKanExtension

                                                        If F admits a pointwise left Kan extension along L, then any left Kan extension of F along L is a pointwise left Kan extension.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For
                                                          noncomputable def CategoryTheory.Functor.pointwiseRightKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] :

                                                          The constructed pointwise right Kan extension when HasPointwiseRightKanExtension L F holds.

                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For
                                                            @[simp]
                                                            theorem CategoryTheory.Functor.pointwiseRightKanExtension_obj {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] (Y : D) :
                                                            (L.pointwiseRightKanExtension F).obj Y = Limits.limit ((StructuredArrow.proj Y L).comp F)
                                                            @[simp]
                                                            theorem CategoryTheory.Functor.pointwiseRightKanExtension_map {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] {Y₁ Y₂ : D} (f : Y₁ Y₂) :
                                                            (L.pointwiseRightKanExtension F).map f = Limits.limit.lift ((StructuredArrow.proj Y₂ L).comp F) { pt := Limits.limit ((StructuredArrow.proj Y₁ L).comp F), π := { app := fun (g : StructuredArrow Y₂ L) => Limits.limit.π ((StructuredArrow.proj Y₁ L).comp F) ((StructuredArrow.map f).obj g), naturality := } }
                                                            noncomputable def CategoryTheory.Functor.pointwiseRightKanExtensionCounit {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] :
                                                            L.comp (L.pointwiseRightKanExtension F) F

                                                            The counit of the constructed pointwise right Kan extension when HasPointwiseRightKanExtension L F holds.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For
                                                              @[simp]
                                                              theorem CategoryTheory.Functor.pointwiseRightKanExtensionCounit_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] (X : C) :
                                                              (L.pointwiseRightKanExtensionCounit F).app X = Limits.limit.π ((StructuredArrow.proj (L.obj X) L).comp F) (StructuredArrow.mk (CategoryStruct.id (L.obj X)))
                                                              noncomputable def CategoryTheory.Functor.pointwiseRightKanExtensionIsPointwiseRightKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] :
                                                              (RightExtension.mk (L.pointwiseRightKanExtension F) (L.pointwiseRightKanExtensionCounit F)).IsPointwiseRightKanExtension

                                                              The functor pointwiseRightKanExtension L F is a pointwise right Kan extension of F along L.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                noncomputable def CategoryTheory.Functor.pointwiseRightKanExtensionIsUniversal {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] :
                                                                CostructuredArrow.IsUniversal (RightExtension.mk (L.pointwiseRightKanExtension F) (L.pointwiseRightKanExtensionCounit F))

                                                                The functor pointwiseRightKanExtension L F is a right Kan extension of F along L.

                                                                Equations
                                                                • L.pointwiseRightKanExtensionIsUniversal F = (L.pointwiseRightKanExtensionIsPointwiseRightKanExtension F).isUniversal
                                                                Instances For
                                                                  instance CategoryTheory.Functor.instIsRightKanExtensionPointwiseRightKanExtensionPointwiseRightKanExtensionCounit {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] :
                                                                  (L.pointwiseRightKanExtension F).IsRightKanExtension (L.pointwiseRightKanExtensionCounit F)
                                                                  instance CategoryTheory.Functor.instHasRightKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_6, u_2} D] [Category.{u_5, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] :
                                                                  L.HasRightKanExtension F
                                                                  def CategoryTheory.Functor.structuredArrowMapCone {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (G : Functor D H) (α : L.comp G F) (Y : D) :

                                                                  An auxiliary cocone used in the lemma pointwiseRightKanExtension_lift_app

                                                                  Equations
                                                                  • One or more equations did not get rendered due to their size.
                                                                  Instances For
                                                                    @[simp]
                                                                    theorem CategoryTheory.Functor.structuredArrowMapCone_pt {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (G : Functor D H) (α : L.comp G F) (Y : D) :
                                                                    (L.structuredArrowMapCone F G α Y).pt = G.obj Y
                                                                    @[simp]
                                                                    theorem CategoryTheory.Functor.structuredArrowMapCone_π_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] (L : Functor C D) (F : Functor C H) (G : Functor D H) (α : L.comp G F) (Y : D) (f : StructuredArrow Y L) :
                                                                    (L.structuredArrowMapCone F G α Y).app f = CategoryStruct.comp (G.map f.hom) (α.app f.right)
                                                                    @[simp]
                                                                    theorem CategoryTheory.Functor.pointwiseRightKanExtension_lift_app {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_6, u_1} C] [Category.{u_4, u_2} D] [Category.{u_5, u_3} H] (L : Functor C D) (F : Functor C H) [L.HasPointwiseRightKanExtension F] (G : Functor D H) (α : L.comp G F) (Y : D) :
                                                                    ((L.pointwiseRightKanExtension F).liftOfIsRightKanExtension (L.pointwiseRightKanExtensionCounit F) G α).app Y = Limits.limit.lift ((StructuredArrow.proj Y L).comp F) (L.structuredArrowMapCone F G α Y)
                                                                    noncomputable def CategoryTheory.Functor.isPointwiseRightKanExtensionOfIsRightKanExtension {C : Type u_1} {D : Type u_2} {H : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} H] {L : Functor C D} {F : Functor C H} [L.HasPointwiseRightKanExtension F] (F' : Functor D H) (α : L.comp F' F) [F'.IsRightKanExtension α] :
                                                                    (RightExtension.mk F' α).IsPointwiseRightKanExtension

                                                                    If F admits a pointwise right Kan extension along L, then any right Kan extension of F along L is a pointwise right Kan extension.

                                                                    Equations
                                                                    • One or more equations did not get rendered due to their size.
                                                                    Instances For