Sifted categories #
A category C
is sifted if C
is nonempty and the diagonal functor C ⥤ C × C
is final.
Sifted categories can be characterized as those such that the colimit functor (C ⥤ Type) ⥤ Type
preserves finite products.
Main results #
isSifted_of_hasBinaryCoproducts_and_nonempty
: A nonempty category with binary coproducts is sifted.
References #
@[reducible, inline]
A category C
IsSiftedOrEmpty
if the diagonal functor C ⥤ C × C
is final.
Equations
Instances For
class
CategoryTheory.IsSifted
(C : Type u)
[CategoryTheory.Category.{v, u} C]
extends (CategoryTheory.Functor.diag C).Final :
A category C
IsSfited
if
- the diagonal functor
C ⥤ C × C
is final. - there exists some object.
- out : ∀ (d : C × C), CategoryTheory.IsConnected (CategoryTheory.StructuredArrow d (CategoryTheory.Functor.diag C))
- nonempty : Nonempty C
Instances
theorem
CategoryTheory.IsSifted.isSifted_of_equiv
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.IsSifted C]
{D : Type u₁}
[CategoryTheory.Category.{v₁, u₁} D]
(e : D ≌ C)
:
Being sifted is preserved by equivalences of categories
theorem
CategoryTheory.IsSifted.isSifted_iff_asSmallIsSifted
{C : Type u}
[CategoryTheory.Category.{v, u} C]
:
In particular a category is sifted iff and only if it is so when viewed as a small category
instance
CategoryTheory.IsSifted.instIsConnected
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.IsSifted C]
:
A sifted category is connected.
Equations
- ⋯ = ⋯
instance
CategoryTheory.IsSifted.instIsSiftedOrEmptyOfHasBinaryCoproducts
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Limits.HasBinaryCoproducts C]
:
A category with binary coproducts is sifted or empty.
Equations
- ⋯ = ⋯
instance
CategoryTheory.IsSifted.isSifted_of_hasBinaryCoproducts_and_nonempty
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[Nonempty C]
[CategoryTheory.Limits.HasBinaryCoproducts C]
:
A nonempty category with binary coproducts is sifted.
Equations
- ⋯ = ⋯