Documentation

Mathlib.Algebra.Vertex.VertexOperator

Vertex operators #

In this file we introduce vertex operators as linear maps to Laurent series.

Definitions #

TODO #

References #

@[reducible, inline]
abbrev VertexOperator (R : Type u_3) (V : Type u_4) [CommRing R] [AddCommGroup V] [Module R V] :
Type u_4

A vertex operator over a commutative ring R is an R-linear map from an R-module V to Laurent series with coefficients in V. We write this as a specialization of the heterogeneous case.

Equations
Instances For
    theorem VertexOperator.ext {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (A B : VertexOperator R V) (h : ∀ (v : V), A v = B v) :
    A = B
    def VertexOperator.ncoeff {V : Type u_2} {R : Type u_3} [CommRing R] [AddCommGroup V] [Module R V] (A : VertexOperator R V) (n : ) :

    The coefficient of a vertex operator under normalized indexing.

    Equations
    Instances For

      In the literature, the nth normalized coefficient of a vertex operator A is written as either Aₙ or A(n).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem VertexOperator.coeff_eq_ncoeff {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (A : VertexOperator R V) (n : ) :
        HVertexOperator.coeff A n = A.ncoeff (-n - 1)
        @[simp]
        theorem VertexOperator.ncoeff_add {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (A B : VertexOperator R V) (n : ) :
        (A + B).ncoeff n = A.ncoeff n + B.ncoeff n
        @[simp]
        theorem VertexOperator.ncoeff_smul {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (A : VertexOperator R V) (r : R) (n : ) :
        (r A).ncoeff n = r A.ncoeff n
        theorem VertexOperator.ncoeff_eq_zero_of_lt_order {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (A : VertexOperator R V) (n : ) (x : V) (h : -n - 1 < ((HahnModule.of R).symm (A x)).order) :
        (A.ncoeff n) x = 0
        theorem VertexOperator.coeff_eq_zero_of_lt_order {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (A : VertexOperator R V) (n : ) (x : V) (h : n < ((HahnModule.of R).symm (A x)).order) :
        noncomputable def VertexOperator.of_coeff {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (f : Module.End R V) (hf : ∀ (x : V), ∃ (n : ), m < n, (f m) x = 0) :

        Given an endomorphism-valued function on integers satisfying a pointwise bounded-pole condition, we produce a vertex operator.

        Equations
        Instances For
          @[simp]
          theorem VertexOperator.of_coeff_apply_coeff {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (f : Module.End R V) (hf : ∀ (x : V), ∃ (n : ), m < n, (f m) x = 0) (x : V) (n : ) :
          ((HahnModule.of R).symm ((VertexOperator.of_coeff f hf) x)).coeff n = (f n) x
          @[simp]
          theorem VertexOperator.ncoeff_of_coeff {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (f : Module.End R V) (hf : ∀ (x : V), ∃ (n : ), m < n, (f m) x = 0) (n : ) :
          (VertexOperator.of_coeff f hf).ncoeff n = f (-n - 1)