Documentation

Mathlib.Algebra.Vertex.HVertexOperator

Vertex operators #

In this file we introduce heterogeneous vertex operators using Hahn series. When R = ℂ, V = W, and Γ = ℤ, then this is the usual notion of meromorphic left-moving 2D field. The notion we use here allows us to consider composites and scalar-multiply by multivariable Laurent series.

Definitions #

Main results #

To do: #

References #

@[reducible, inline]
abbrev HVertexOperator (Γ : Type u_5) [PartialOrder Γ] (R : Type u_6) [CommRing R] (V : Type u_7) (W : Type u_8) [AddCommGroup V] [Module R V] [AddCommGroup W] [Module R W] :
Type (max u_7 u_8 u_5)

A heterogeneous Γ-vertex operator over a commutator ring R is an R-linear map from an R-module V to Γ-Hahn series with coefficients in an R-module W.

Equations
Instances For
    theorem VertexAlg.HetVertexOperator.ext {Γ : Type u_1} [PartialOrder Γ] {R : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing R] [AddCommGroup V] [Module R V] [AddCommGroup W] [Module R W] (A : HVertexOperator Γ R V W) (B : HVertexOperator Γ R V W) (h : ∀ (v : V), A v = B v) :
    A = B
    @[simp]
    theorem VertexAlg.coeff_apply {Γ : Type u_1} [PartialOrder Γ] {R : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing R] [AddCommGroup V] [Module R V] [AddCommGroup W] [Module R W] (A : HVertexOperator Γ R V W) (n : Γ) (x : V) :
    (VertexAlg.coeff A n) x = (A x).coeff n
    def VertexAlg.coeff {Γ : Type u_1} [PartialOrder Γ] {R : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing R] [AddCommGroup V] [Module R V] [AddCommGroup W] [Module R W] (A : HVertexOperator Γ R V W) (n : Γ) :

    The coefficient of a heterogeneous vertex operator, viewed as a formal power series with coefficients in linear maps.

    Equations
    • VertexAlg.coeff A n = { toFun := fun (x : V) => (A x).coeff n, map_add' := , map_smul' := }
    Instances For
      theorem VertexAlg.coeff_isPWOsupport {Γ : Type u_1} [PartialOrder Γ] {R : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing R] [AddCommGroup V] [Module R V] [AddCommGroup W] [Module R W] (A : HVertexOperator Γ R V W) (v : V) :
      (Function.support (A v).coeff).IsPWO
      theorem VertexAlg.coeff_inj {Γ : Type u_1} [PartialOrder Γ] {R : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing R] [AddCommGroup V] [Module R V] [AddCommGroup W] [Module R W] :
      Function.Injective VertexAlg.coeff
      @[simp]
      theorem VertexAlg.HetVertexOperator.of_coeff_apply_coeff {Γ : Type u_1} [PartialOrder Γ] {R : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing R] [AddCommGroup V] [Module R V] [AddCommGroup W] [Module R W] (f : ΓV →ₗ[R] W) (hf : ∀ (x : V), (Function.support fun (x_1 : Γ) => (f x_1) x).IsPWO) (x : V) (g : Γ) :
      ((VertexAlg.HetVertexOperator.of_coeff f hf) x).coeff g = (f g) x
      def VertexAlg.HetVertexOperator.of_coeff {Γ : Type u_1} [PartialOrder Γ] {R : Type u_2} {V : Type u_3} {W : Type u_4} [CommRing R] [AddCommGroup V] [Module R V] [AddCommGroup W] [Module R W] (f : ΓV →ₗ[R] W) (hf : ∀ (x : V), (Function.support fun (x_1 : Γ) => (f x_1) x).IsPWO) :

      Given a coefficient function valued in linear maps satisfying a partially well-ordered support condition, we produce a heterogeneous vertex operator.

      Equations
      Instances For