Documentation

Mathlib.RingTheory.Smooth.Kaehler

Relation of smoothness and Ω[S⁄R] #

Main results #

Future projects #

References #

def derivationOfSectionOfKerSqZero {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra R S] (f : P →ₐ[R] S) (hf' : RingHom.ker f ^ 2 = ) (g : S →ₐ[R] P) (hg : f.comp g = AlgHom.id R S) :

Given a surjective algebra homomorphism f : P →ₐ[R] S with square-zero kernel I, and a section g : S →ₐ[R] P (as an algebra homomorphism), we get an R-derivation P → I via x ↦ x - g (f x).

Equations
  • derivationOfSectionOfKerSqZero f hf' g hg = { toFun := fun (x : P) => x - g (f x), , map_add' := , map_smul' := , map_one_eq_zero' := , leibniz' := }
Instances For
    @[simp]
    theorem derivationOfSectionOfKerSqZero_apply_coe {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra R S] (f : P →ₐ[R] S) (hf' : RingHom.ker f ^ 2 = ) (g : S →ₐ[R] P) (hg : f.comp g = AlgHom.id R S) (x : P) :
    ((derivationOfSectionOfKerSqZero f hf' g hg) x) = x - g (f x)
    theorem isScalarTower_of_section_of_ker_sqZero {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] [Algebra R S] [IsScalarTower R P S] (g : S →ₐ[R] P) (hf' : RingHom.ker (algebraMap P S) ^ 2 = ) (hg : (IsScalarTower.toAlgHom R P S).comp g = AlgHom.id R S) :
    noncomputable def retractionOfSectionOfKerSqZero {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] [Algebra R S] [IsScalarTower R P S] (g : S →ₐ[R] P) (hf' : RingHom.ker (algebraMap P S) ^ 2 = ) (hg : (IsScalarTower.toAlgHom R P S).comp g = AlgHom.id R S) :

    Given a surjective algebra hom f : P →ₐ[R] S with square-zero kernel I, and a section g : S →ₐ[R] P (as algebra homs), we get a retraction of the injection I → S ⊗[P] Ω[P/R].

    Equations
    Instances For
      @[simp]
      theorem retractionOfSectionOfKerSqZero_tmul_D {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] [Algebra R S] [IsScalarTower R P S] (g : S →ₐ[R] P) (hf' : RingHom.ker (algebraMap P S) ^ 2 = ) (hg : (IsScalarTower.toAlgHom R P S).comp g = AlgHom.id R S) (s : S) (t : P) :
      ((retractionOfSectionOfKerSqZero g hf' hg) (s ⊗ₜ[P] (KaehlerDifferential.D R P) t)) = g s * t - g s * g ((algebraMap P S) t)
      theorem sectionOfRetractionKerToTensorAux_prop {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] (l : TensorProduct P S (Ω[PR]) →ₗ[P] (RingHom.ker (algebraMap P S))) (hl : l ∘ₗ KaehlerDifferential.kerToTensor R P S = LinearMap.id) (x y : P) (h : (algebraMap P S) x = (algebraMap P S) y) :
      x - (l (1 ⊗ₜ[P] (KaehlerDifferential.D R P) x)) = y - (l (1 ⊗ₜ[P] (KaehlerDifferential.D R P) y))
      noncomputable def sectionOfRetractionKerToTensorAux {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] (l : TensorProduct P S (Ω[PR]) →ₗ[P] (RingHom.ker (algebraMap P S))) (hl : l ∘ₗ KaehlerDifferential.kerToTensor R P S = LinearMap.id) (σ : SP) (hσ : ∀ (x : S), (algebraMap P S) (σ x) = x) [Algebra R S] [IsScalarTower R P S] (hf' : RingHom.ker (algebraMap P S) ^ 2 = ) :

      Given a surjective algebra homomorphism f : P →ₐ[R] S with square-zero kernel I. Let σ be an arbitrary (set-theoretic) section of f. Suppose we have a retraction l of the injection I →ₗ[P] S ⊗[P] Ω[P/R], then x ↦ σ x - l (1 ⊗ D (σ x)) is an algebra homomorphism and a section to f.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem sectionOfRetractionKerToTensorAux_algebraMap {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] (l : TensorProduct P S (Ω[PR]) →ₗ[P] (RingHom.ker (algebraMap P S))) (hl : l ∘ₗ KaehlerDifferential.kerToTensor R P S = LinearMap.id) (σ : SP) (hσ : ∀ (x : S), (algebraMap P S) (σ x) = x) [Algebra R S] [IsScalarTower R P S] (hf' : RingHom.ker (algebraMap P S) ^ 2 = ) (x : P) :
        (sectionOfRetractionKerToTensorAux l hl σ hf') ((algebraMap P S) x) = x - (l (1 ⊗ₜ[P] (KaehlerDifferential.D R P) x))
        theorem toAlgHom_comp_sectionOfRetractionKerToTensorAux {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] (l : TensorProduct P S (Ω[PR]) →ₗ[P] (RingHom.ker (algebraMap P S))) (hl : l ∘ₗ KaehlerDifferential.kerToTensor R P S = LinearMap.id) (σ : SP) (hσ : ∀ (x : S), (algebraMap P S) (σ x) = x) [Algebra R S] [IsScalarTower R P S] (hf' : RingHom.ker (algebraMap P S) ^ 2 = ) (hf : Function.Surjective (algebraMap P S)) :
        noncomputable def sectionOfRetractionKerToTensor {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] (l : TensorProduct P S (Ω[PR]) →ₗ[P] (RingHom.ker (algebraMap P S))) (hl : l ∘ₗ KaehlerDifferential.kerToTensor R P S = LinearMap.id) [Algebra R S] [IsScalarTower R P S] (hf' : RingHom.ker (algebraMap P S) ^ 2 = ) (hf : Function.Surjective (algebraMap P S)) :

        Given a surjective algebra homomorphism f : P →ₐ[R] S with square-zero kernel I. Suppose we have a retraction l of the injection I →ₗ[P] S ⊗[P] Ω[P/R], then x ↦ σ x - l (1 ⊗ D (σ x)) is an algebra homomorphism and a section to f, where σ is an arbitrary (set-theoretic) section of f

        Equations
        Instances For
          @[simp]
          noncomputable def retractionKerToTensorEquivSection {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] [Algebra R S] [IsScalarTower R P S] (hf' : RingHom.ker (algebraMap P S) ^ 2 = ) (hf : Function.Surjective (algebraMap P S)) :

          Given a surjective algebra homomorphism f : P →ₐ[R] S with square-zero kernel I, there is a one-to-one correspondence between P-linear retractions of I →ₗ[P] S ⊗[P] Ω[P/R] and algebra homomorphism sections of f.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            noncomputable def derivationQuotKerSq (R P S : Type u) [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] [Algebra R S] [IsScalarTower R P S] :

            Given a tower of algebras S/P/R, with I = ker(P → S), this is the R-derivative P/I² → S ⊗[P] Ω[P⁄R] given by [x] ↦ 1 ⊗ D x.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem derivationQuotKerSq_mk {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] [Algebra R S] [IsScalarTower R P S] (x : P) :
              noncomputable def tensorKaehlerQuotKerSqEquiv (R P S : Type u) [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] [Algebra R S] [IsScalarTower R P S] :

              Given a tower of algebras S/P/R, with I = ker(P → S) and Q := P/I², there is an isomorphism of S-modules S ⊗[Q] Ω[Q/R] ≃ S ⊗[P] Ω[P/R].

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                noncomputable def retractionKerCotangentToTensorEquivSection {R P S : Type u} [CommRing R] [CommRing P] [CommRing S] [Algebra R P] [Algebra P S] [Algebra R S] [IsScalarTower R P S] (hf : Function.Surjective (algebraMap P S)) :
                { l : TensorProduct P S (Ω[PR]) →ₗ[P] (RingHom.ker (algebraMap P S)).Cotangent // l ∘ₗ KaehlerDifferential.kerCotangentToTensor R P S = LinearMap.id } { g : S →ₐ[R] P RingHom.ker (IsScalarTower.toAlgHom R P S).toRingHom ^ 2 // (IsScalarTower.toAlgHom R P S).kerSquareLift.comp g = AlgHom.id R S }

                Given a surjective algebra homomorphism f : P →ₐ[R] S with kernel I, there is a one-to-one correspondence between P-linear retractions of I/I² →ₗ[P] S ⊗[P] Ω[P/R] and algebra homomorphism sections of f‾ : P/I² → S.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  Given a formally smooth R-algebra P and a surjective algebra homomorphism f : P →ₐ[R] S with kernel I (typically a presentation R[X] → S), S is formally smooth iff the P-linear map I/I² → S ⊗[P] Ω[P⁄R] is split injective. Also see Algebra.Extension.formallySmooth_iff_split_injection for the version in terms of Extension.

                  Stacks Tag 031I

                  theorem Algebra.Extension.formallySmooth_iff_split_injection {R S : Type u} [CommRing R] [CommRing S] [Algebra R S] (P : Extension R S) [FormallySmooth R P.Ring] :
                  FormallySmooth R S ∃ (l : P.CotangentSpace →ₗ[S] P.Cotangent), l ∘ₗ P.cotangentComplex = LinearMap.id

                  Given a formally smooth R-algebra P and a surjective algebra homomorphism f : P →ₐ[R] S with kernel I (typically a presentation R[X] → S), S is formally smooth iff the P-linear map I/I² → S ⊗[P] Ω[P⁄R] is split injective.

                  Stacks Tag 031I

                  Given a formally smooth R-algebra P and a surjective algebra homomorphism f : P →ₐ[R] S with kernel I (typically a presentation R[X] → S), then S is formally smooth iff I/I² → S ⊗[P] Ω[S⁄R] is injective and S ⊗[P] Ω[P⁄R] → Ω[S⁄R] is split surjective.

                  Given a formally smooth R-algebra P and a surjective algebra homomorphism f : P →ₐ[R] S with kernel I (typically a presentation R[X] → S), then S is formally smooth iff I/I² → S ⊗[P] Ω[P⁄R] is injective and Ω[S/R] is projective.

                  An algebra is formally smooth if and only if H¹(L_{R/S}) = 0 and Ω_{S/R} is projective.

                  Stacks Tag 031J

                  noncomputable def Algebra.Extension.homInfinitesimal {R S : Type u} [CommRing R] [CommRing S] [Algebra R S] (P₁ P₂ : Extension R S) [FormallySmooth R P₁.Ring] :
                  P₁.infinitesimal.Hom P₂.infinitesimal

                  Given extensions 0 → I₁ → P₁ → S → 0 and 0 → I₂ → P₂ → S → 0 with P₁ formally smooth, this is an arbitrarily chosen map P₁/I₁² → P₂/I₂² of extensions.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    noncomputable def Algebra.Extension.H1Cotangent.equivOfFormallySmooth {R S : Type u} [CommRing R] [CommRing S] [Algebra R S] (P₁ P₂ : Extension R S) [FormallySmooth R P₁.Ring] [FormallySmooth R P₂.Ring] :
                    P₁.H1Cotangent ≃ₗ[S] P₂.H1Cotangent

                    Formally smooth extensions have isomorphic H¹(L_P).

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem Algebra.Extension.H1Cotangent.equivOfFormallySmooth_toLinearMap {R S : Type u} [CommRing R] [CommRing S] [Algebra R S] {P₁ P₂ : Extension R S} (f : P₁.Hom P₂) [FormallySmooth R P₁.Ring] [FormallySmooth R P₂.Ring] :
                      (equivOfFormallySmooth P₁ P₂) = map f
                      theorem Algebra.Extension.H1Cotangent.equivOfFormallySmooth_apply {R S : Type u} [CommRing R] [CommRing S] [Algebra R S] {P₁ P₂ : Extension R S} (f : P₁.Hom P₂) [FormallySmooth R P₁.Ring] [FormallySmooth R P₂.Ring] (x : P₁.H1Cotangent) :
                      (equivOfFormallySmooth P₁ P₂) x = (map f) x
                      theorem Algebra.Extension.H1Cotangent.equivOfFormallySmooth_symm {R S : Type u} [CommRing R] [CommRing S] [Algebra R S] (P₁ P₂ : Extension R S) [FormallySmooth R P₁.Ring] [FormallySmooth R P₂.Ring] :
                      (equivOfFormallySmooth P₁ P₂).symm = equivOfFormallySmooth P₂ P₁
                      noncomputable def Algebra.Extension.equivH1CotangentOfFormallySmooth {R S : Type u} [CommRing R] [CommRing S] [Algebra R S] (P : Extension R S) [FormallySmooth R P.Ring] :
                      P.H1Cotangent ≃ₗ[S] H1Cotangent R S

                      Any formally smooth extension can be used to calculate H¹(L_{S/R}).

                      Equations
                      Instances For