Documentation

Mathlib.Algebra.Lie.Weights.Killing

Roots of Lie algebras with non-degenerate Killing forms #

The file contains definitions and results about roots of Lie algebras with non-degenerate Killing forms.

Main definitions #

theorem LieAlgebra.restrict_killingForm (R : Type u_1) (L : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] (H : LieSubalgebra R L) :
(killingForm R L).restrict H.toSubmodule = LieModule.traceForm R (↥H) L
theorem LieAlgebra.IsKilling.ker_restrict_eq_bot_of_isCartanSubalgebra (R : Type u_1) (L : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsKilling R L] [IsNoetherian R L] [IsArtinian R L] (H : LieSubalgebra R L) [H.IsCartanSubalgebra] :
LinearMap.ker ((killingForm R L).restrict H.toSubmodule) =

If the Killing form of a Lie algebra is non-singular, it remains non-singular when restricted to a Cartan subalgebra.

theorem LieAlgebra.IsKilling.traceForm_cartan_nondegenerate (R : Type u_1) (L : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [LieAlgebra.IsKilling R L] [IsNoetherian R L] [IsArtinian R L] (H : LieSubalgebra R L) [H.IsCartanSubalgebra] :
(LieModule.traceForm R (↥H) L).Nondegenerate
theorem LieAlgebra.killingForm_apply_eq_zero_of_mem_rootSpace_of_add_ne_zero (K : Type u_2) (L : Type u_3) [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] {α β : HK} {x y : L} (hx : x LieAlgebra.rootSpace H α) (hy : y LieAlgebra.rootSpace H β) (hαβ : α + β 0) :
((killingForm K L) x) y = 0

For any α and β, the corresponding root spaces are orthogonal with respect to the Killing form, provided α + β ≠ 0.

theorem LieAlgebra.mem_ker_killingForm_of_mem_rootSpace_of_forall_rootSpace_neg (K : Type u_2) (L : Type u_3) [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] {α : HK} {x : L} (hx : x LieAlgebra.rootSpace H α) (hx' : yLieAlgebra.rootSpace H (-α), ((killingForm K L) x) y = 0) :

Elements of the α root space which are Killing-orthogonal to the root space are Killing-orthogonal to all of L.

theorem LieAlgebra.IsKilling.eq_zero_of_isNilpotent_ad_of_mem_isCartanSubalgebra (K : Type u_2) (L : Type u_3) [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] {x : L} (hx : x H) (hx' : IsNilpotent ((LieAlgebra.ad K L) x)) :
x = 0

If a Lie algebra L has non-degenerate Killing form, the only element of a Cartan subalgebra whose adjoint action on L is nilpotent, is the zero element.

Over a perfect field a much stronger result is true, see LieAlgebra.IsKilling.isSemisimple_ad_of_mem_isCartanSubalgebra.

@[simp]
theorem LieAlgebra.IsKilling.corootSpace_zero_eq_bot (K : Type u_2) (L : Type u_3) [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] :
noncomputable def LieAlgebra.IsKilling.cartanEquivDual {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] :
H ≃ₗ[K] Module.Dual K H

The restriction of the Killing form to a Cartan subalgebra, as a linear equivalence to the dual.

Equations
Instances For
    @[simp]
    theorem LieAlgebra.IsKilling.cartanEquivDual_apply_apply {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] (a✝ m : H) :
    ((LieAlgebra.IsKilling.cartanEquivDual H) a✝) m = (LinearMap.trace K L) ((LieModule.toEnd K (↥H) L) a✝ * (LieModule.toEnd K (↥H) L) m)
    noncomputable def LieAlgebra.IsKilling.coroot {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] (α : LieModule.Weight K (↥H) L) :
    H

    The coroot corresponding to a root.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem LieAlgebra.IsKilling.traceForm_coroot {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] (α : LieModule.Weight K (↥H) L) (x : H) :
      theorem LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg_aux {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] {α : LieModule.Weight K (↥H) L} {e f : L} (heα : e LieAlgebra.rootSpace H α) (hfα : f LieAlgebra.rootSpace H (-α)) (aux : ∀ (h : H), h, e = α h e) :

      This is Proposition 4.18 from [Car05] except that we use LieModule.exists_forall_lie_eq_smul instead of Lie's theorem (and so avoid assuming K has characteristic zero).

      @[simp]

      Given a splitting Cartan subalgebra H of a finite-dimensional Lie algebra with non-singular Killing form, the corresponding roots span the dual space of H.

      @[simp]
      theorem LieAlgebra.IsKilling.span_weight_isNonZero_eq_top (K : Type u_2) (L : Type u_3) [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] (H : LieSubalgebra K L) [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] :
      Submodule.span K (LieModule.Weight.toLinear K (↥H) L '' {α : LieModule.Weight K (↥H) L | α.IsNonZero}) =
      @[simp]
      theorem LieAlgebra.IsKilling.iInf_ker_weight_eq_bot {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] :
      ⨅ (α : LieModule.Weight K (↥H) L), LieModule.Weight.ker =
      theorem LieAlgebra.IsKilling.isSemisimple_ad_of_mem_isCartanSubalgebra {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [PerfectField K] {x : L} (hx : x H) :
      ((LieAlgebra.ad K L) x).IsSemisimple
      theorem LieAlgebra.IsKilling.lie_eq_smul_of_mem_rootSpace {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [PerfectField K] {α : HK} {x : L} (hx : x LieAlgebra.rootSpace H α) (h : H) :
      h, x = α h x
      theorem LieAlgebra.IsKilling.lie_eq_killingForm_smul_of_mem_rootSpace_of_mem_rootSpace_neg {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [PerfectField K] {α : LieModule.Weight K (↥H) L} {e f : L} (heα : e LieAlgebra.rootSpace H α) (hfα : f LieAlgebra.rootSpace H (-α)) :
      theorem LieAlgebra.IsKilling.eq_zero_of_apply_eq_zero_of_mem_corootSpace {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] (x : H) (α : HK) (hαx : α x = 0) (hx : x LieAlgebra.corootSpace α) :
      x = 0

      The contrapositive of this result is very useful, taking x to be the element of H corresponding to a root α under the identification between H and H^* provided by the Killing form.

      theorem LieAlgebra.IsKilling.disjoint_ker_weight_corootSpace {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] (α : LieModule.Weight K (↥H) L) :
      Disjoint LieModule.Weight.ker (lieIdealSubalgebra K (↥H) (LieAlgebra.corootSpace α)).toSubmodule
      theorem LieAlgebra.IsKilling.root_apply_cartanEquivDual_symm_ne_zero {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] {α : LieModule.Weight K (↥H) L} (hα : α.IsNonZero) :
      theorem LieAlgebra.IsKilling.root_apply_coroot {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] {α : LieModule.Weight K (↥H) L} (hα : α.IsNonZero) :
      @[simp]
      theorem LieAlgebra.IsKilling.coroot_eq_zero_iff {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] {α : LieModule.Weight K (↥H) L} :
      @[simp]
      theorem LieAlgebra.IsKilling.coroot_zero {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] [Nontrivial L] :
      @[simp]
      theorem LieAlgebra.IsKilling.corootSpace_eq_bot_iff {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] {α : LieModule.Weight K (↥H) L} :
      theorem LieAlgebra.IsKilling.isCompl_ker_weight_span_coroot {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] (α : LieModule.Weight K (↥H) L) :
      IsCompl LieModule.Weight.ker (Submodule.span K {LieAlgebra.IsKilling.coroot α})
      theorem LieAlgebra.IsKilling.traceForm_eq_zero_of_mem_ker_of_mem_span_coroot {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] {α : LieModule.Weight K (↥H) L} {x y : H} (hx : x LieModule.Weight.ker) (hy : y Submodule.span K {LieAlgebra.IsKilling.coroot α}) :
      ((LieModule.traceForm K (↥H) L) x) y = 0
      @[simp]
      theorem LieAlgebra.IsKilling.orthogonal_span_coroot_eq_ker {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] (α : LieModule.Weight K (↥H) L) :
      (LieModule.traceForm K (↥H) L).orthogonal (Submodule.span K {LieAlgebra.IsKilling.coroot α}) = LieModule.Weight.ker
      @[simp]
      theorem LieAlgebra.IsKilling.coroot_eq_iff {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] (α β : LieModule.Weight K (↥H) L) :
      theorem LieAlgebra.IsKilling.exists_isSl2Triple_of_weight_isNonZero {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] {α : LieModule.Weight K (↥H) L} (hα : α.IsNonZero) :
      ∃ (h : L) (e : L) (f : L), IsSl2Triple h e f e LieAlgebra.rootSpace H α f LieAlgebra.rootSpace H (-α)
      theorem IsSl2Triple.h_eq_coroot {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] {α : LieModule.Weight K (↥H) L} (hα : α.IsNonZero) {h e f : L} (ht : IsSl2Triple h e f) (heα : e LieAlgebra.rootSpace H α) (hfα : f LieAlgebra.rootSpace H (-α)) :
      theorem LieAlgebra.IsKilling.finrank_rootSpace_eq_one {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] (α : LieModule.Weight K (↥H) L) (hα : α.IsNonZero) :
      @[reducible, inline]
      noncomputable abbrev LieSubalgebra.root {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] :

      The collection of roots as a Finset.

      Equations
      Instances For
        theorem LieAlgebra.IsKilling.restrict_killingForm_eq_sum {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieAlgebra.IsKilling K L] [LieModule.IsTriangularizable K (↥H) L] [CharZero K] :
        (killingForm K L).restrict H.toSubmodule = αLieSubalgebra.root, (LieModule.Weight.toLinear K (↥H) L α).smulRight (LieModule.Weight.toLinear K (↥H) L α)
        Equations
        @[simp]
        theorem LieModule.Weight.coe_neg {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] [LieAlgebra.IsKilling K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] {α : LieModule.Weight K (↥H) L} :
        (-α) = -α
        theorem LieModule.Weight.IsZero.neg {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] [LieAlgebra.IsKilling K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] {α : LieModule.Weight K (↥H) L} (h : α.IsZero) :
        (-α).IsZero
        @[simp]
        theorem LieModule.Weight.isZero_neg {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] [LieAlgebra.IsKilling K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] {α : LieModule.Weight K (↥H) L} :
        (-α).IsZero α.IsZero
        theorem LieModule.Weight.IsNonZero.neg {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] [LieAlgebra.IsKilling K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] {α : LieModule.Weight K (↥H) L} (h : α.IsNonZero) :
        (-α).IsNonZero
        @[simp]
        theorem LieModule.Weight.isNonZero_neg {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] [LieAlgebra.IsKilling K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] {α : LieModule.Weight K (↥H) L} :
        (-α).IsNonZero α.IsNonZero
        @[simp]
        theorem LieModule.Weight.toLinear_neg {K : Type u_2} {L : Type u_3} [LieRing L] [Field K] [LieAlgebra K L] [FiniteDimensional K L] [LieAlgebra.IsKilling K L] {H : LieSubalgebra K L} [H.IsCartanSubalgebra] [LieModule.IsTriangularizable K (↥H) L] {α : LieModule.Weight K (↥H) L} :
        @[simp]