Documentation

Mathlib.LinearAlgebra.BilinearForm.Properties

Bilinear form #

This file defines various properties of bilinear forms, including reflexivity, symmetry, alternativity, adjoint, and non-degeneracy. For orthogonality, see LinearAlgebra/BilinearForm/Orthogonal.lean.

Notations #

Given any term B of type BilinForm, due to a coercion, can use the notation B x y to refer to the function field, ie. B x y = B.bilin x y.

In this file we use the following type variables:

References #

Tags #

Bilinear form,

Reflexivity, symmetry, and alternativity #

The proposition that a bilinear form is reflexive

Equations
Instances For
    theorem LinearMap.BilinForm.IsRefl.eq_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (H : B.IsRefl) {x y : M} :
    (B x) y = 0(B y) x = 0
    theorem LinearMap.BilinForm.IsRefl.neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} (hB : B.IsRefl) :
    (-B).IsRefl
    theorem LinearMap.BilinForm.IsRefl.smul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {α : Type u_8} [CommSemiring α] [Module α R] [SMulCommClass R α R] [NoZeroSMulDivisors α R] (a : α) {B : LinearMap.BilinForm R M} (hB : B.IsRefl) :
    (a B).IsRefl
    theorem LinearMap.BilinForm.IsRefl.groupSMul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {α : Type u_8} [Group α] [DistribMulAction α R] [SMulCommClass R α R] (a : α) {B : LinearMap.BilinForm R M} (hB : B.IsRefl) :
    (a B).IsRefl
    @[simp]
    theorem LinearMap.BilinForm.isRefl_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :
    @[simp]
    theorem LinearMap.BilinForm.isRefl_neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} :
    (-B).IsRefl B.IsRefl

    The proposition that a bilinear form is symmetric

    Equations
    Instances For
      theorem LinearMap.BilinForm.IsSymm.eq {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (H : B.IsSymm) (x y : M) :
      (B x) y = (B y) x
      theorem LinearMap.BilinForm.IsSymm.isRefl {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (H : B.IsSymm) :
      B.IsRefl
      theorem LinearMap.BilinForm.IsSymm.add {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B₁ B₂ : LinearMap.BilinForm R M} (hB₁ : B₁.IsSymm) (hB₂ : B₂.IsSymm) :
      (B₁ + B₂).IsSymm
      theorem LinearMap.BilinForm.IsSymm.sub {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ B₂ : LinearMap.BilinForm R₁ M₁} (hB₁ : B₁.IsSymm) (hB₂ : B₂.IsSymm) :
      (B₁ - B₂).IsSymm
      theorem LinearMap.BilinForm.IsSymm.neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} (hB : B.IsSymm) :
      (-B).IsSymm
      theorem LinearMap.BilinForm.IsSymm.smul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {α : Type u_8} [Monoid α] [DistribMulAction α R] [SMulCommClass R α R] (a : α) {B : LinearMap.BilinForm R M} (hB : B.IsSymm) :
      (a B).IsSymm
      theorem LinearMap.BilinForm.IsSymm.restrict {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (b : B.IsSymm) (W : Submodule R M) :
      (B.restrict W).IsSymm

      The restriction of a symmetric bilinear form on a submodule is also symmetric.

      @[simp]
      theorem LinearMap.BilinForm.isSymm_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :
      @[simp]
      theorem LinearMap.BilinForm.isSymm_neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} :
      (-B).IsSymm B.IsSymm
      theorem LinearMap.BilinForm.isSymm_iff_flip {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} :
      B.IsSymm flipHom B = B

      The proposition that a bilinear form is alternating

      Equations
      Instances For
        theorem LinearMap.BilinForm.IsAlt.self_eq_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (H : B.IsAlt) (x : M) :
        (B x) x = 0
        theorem LinearMap.BilinForm.IsAlt.neg_eq {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ : LinearMap.BilinForm R₁ M₁} (H : B₁.IsAlt) (x y : M₁) :
        -(B₁ x) y = (B₁ y) x
        theorem LinearMap.BilinForm.IsAlt.isRefl {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ : LinearMap.BilinForm R₁ M₁} (H : B₁.IsAlt) :
        B₁.IsRefl
        theorem LinearMap.BilinForm.IsAlt.eq_of_add_add_eq_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} [IsCancelAdd R] {a b c : M} (H : B.IsAlt) (hAdd : a + b + c = 0) :
        (B a) b = (B b) c
        theorem LinearMap.BilinForm.IsAlt.add {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B₁ B₂ : LinearMap.BilinForm R M} (hB₁ : B₁.IsAlt) (hB₂ : B₂.IsAlt) :
        (B₁ + B₂).IsAlt
        theorem LinearMap.BilinForm.IsAlt.sub {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B₁ B₂ : LinearMap.BilinForm R₁ M₁} (hB₁ : B₁.IsAlt) (hB₂ : B₂.IsAlt) :
        (B₁ - B₂).IsAlt
        theorem LinearMap.BilinForm.IsAlt.neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} (hB : B.IsAlt) :
        (-B).IsAlt
        theorem LinearMap.BilinForm.IsAlt.smul {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {α : Type u_8} [Monoid α] [DistribMulAction α R] [SMulCommClass R α R] (a : α) {B : LinearMap.BilinForm R M} (hB : B.IsAlt) :
        (a B).IsAlt
        @[simp]
        theorem LinearMap.BilinForm.isAlt_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] :
        @[simp]
        theorem LinearMap.BilinForm.isAlt_neg {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] {B : LinearMap.BilinForm R₁ M₁} :
        (-B).IsAlt B.IsAlt

        A nondegenerate bilinear form is a bilinear form such that the only element that is orthogonal to every other element is 0; i.e., for all nonzero m in M, there exists n in M with B m n ≠ 0.

        Note that for general (neither symmetric nor antisymmetric) bilinear forms this definition has a chirality; in addition to this "left" nondegeneracy condition one could define a "right" nondegeneracy condition that in the situation described, B n m ≠ 0. This variant definition is not currently provided in mathlib. In finite dimension either definition implies the other.

        Equations
        • B.Nondegenerate = ∀ (m : M), (∀ (n : M), (B m) n = 0)m = 0
        Instances For

          In a non-trivial module, zero is not non-degenerate.

          theorem LinearMap.BilinForm.Nondegenerate.ne_zero {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] [Nontrivial M] {B : LinearMap.BilinForm R M} (h : B.Nondegenerate) :
          B 0
          theorem LinearMap.BilinForm.Nondegenerate.congr {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B : LinearMap.BilinForm R M} (e : M ≃ₗ[R] M') (h : B.Nondegenerate) :
          ((BilinForm.congr e) B).Nondegenerate
          @[simp]
          theorem LinearMap.BilinForm.nondegenerate_congr_iff {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {M' : Type u_8} [AddCommMonoid M'] [Module R M'] {B : LinearMap.BilinForm R M} (e : M ≃ₗ[R] M') :
          ((congr e) B).Nondegenerate B.Nondegenerate
          theorem LinearMap.BilinForm.nondegenerate_iff_ker_eq_bot {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} :
          B.Nondegenerate ker B =

          A bilinear form is nondegenerate if and only if it has a trivial kernel.

          theorem LinearMap.BilinForm.Nondegenerate.ker_eq_bot {R : Type u_1} {M : Type u_2} [CommSemiring R] [AddCommMonoid M] [Module R M] {B : LinearMap.BilinForm R M} (h : B.Nondegenerate) :
          theorem LinearMap.BilinForm.compLeft_injective {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] (B : LinearMap.BilinForm R₁ M₁) (b : B.Nondegenerate) :
          theorem LinearMap.BilinForm.isAdjointPair_unique_of_nondegenerate {R₁ : Type u_3} {M₁ : Type u_4} [CommRing R₁] [AddCommGroup M₁] [Module R₁ M₁] (B : LinearMap.BilinForm R₁ M₁) (b : B.Nondegenerate) (φ ψ₁ ψ₂ : M₁ →ₗ[R₁] M₁) (hψ₁ : IsAdjointPair B B ψ₁ φ) (hψ₂ : IsAdjointPair B B ψ₂ φ) :
          ψ₁ = ψ₂
          noncomputable def LinearMap.BilinForm.toDual {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) :

          Given a nondegenerate bilinear form B on a finite-dimensional vector space, B.toDual is the linear equivalence between a vector space and its dual.

          Equations
          Instances For
            theorem LinearMap.BilinForm.toDual_def {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (b : SeparatingLeft B) {m n : V} :
            ((B.toDual b) m) n = (B m) n
            @[simp]
            theorem LinearMap.BilinForm.apply_toDual_symm_apply {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} {hB : B.Nondegenerate} (f : Module.Dual K V) (v : V) :
            (B ((B.toDual hB).symm f)) v = f v
            theorem LinearMap.BilinForm.Nondegenerate.flip {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} (hB : B.Nondegenerate) :
            B.flip.Nondegenerate
            theorem LinearMap.BilinForm.nonDegenerateFlip_iff {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] {B : LinearMap.BilinForm K V} :
            B.flip.Nondegenerate B.Nondegenerate
            noncomputable def LinearMap.BilinForm.dualBasis {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ι : Type u_9} [DecidableEq ι] [Finite ι] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (b : Basis ι K V) :
            Basis ι K V

            The B-dual basis B.dualBasis hB b to a finite basis b satisfies B (B.dualBasis hB b i) (b j) = B (b i) (B.dualBasis hB b j) = if i = j then 1 else 0, where B is a nondegenerate (symmetric) bilinear form and b is a finite basis.

            Equations
            • B.dualBasis hB b = b.dualBasis.map (B.toDual hB).symm
            Instances For
              @[simp]
              theorem LinearMap.BilinForm.dualBasis_repr_apply {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ι : Type u_9} [DecidableEq ι] [Finite ι] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (b : Basis ι K V) (x : V) (i : ι) :
              ((B.dualBasis hB b).repr x) i = (B x) (b i)
              theorem LinearMap.BilinForm.apply_dualBasis_left {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ι : Type u_9} [DecidableEq ι] [Finite ι] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (b : Basis ι K V) (i j : ι) :
              (B ((B.dualBasis hB b) i)) (b j) = if j = i then 1 else 0
              theorem LinearMap.BilinForm.apply_dualBasis_right {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] {ι : Type u_9} [DecidableEq ι] [Finite ι] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (sym : B.IsSymm) (b : Basis ι K V) (i j : ι) :
              (B (b i)) ((B.dualBasis hB b) j) = if i = j then 1 else 0
              @[simp]
              theorem LinearMap.BilinForm.dualBasis_dualBasis_flip {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) {ι : Type u_10} [Finite ι] [DecidableEq ι] (b : Basis ι K V) :
              B.dualBasis hB (B.flip.dualBasis b) = b
              @[simp]
              theorem LinearMap.BilinForm.dualBasis_flip_dualBasis {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) {ι : Type u_10} [Finite ι] [DecidableEq ι] [FiniteDimensional K V] (b : Basis ι K V) :
              B.flip.dualBasis (B.dualBasis hB b) = b
              @[simp]
              theorem LinearMap.BilinForm.dualBasis_dualBasis {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] (B : LinearMap.BilinForm K V) (hB : B.Nondegenerate) (hB' : B.IsSymm) {ι : Type u_10} [Finite ι] [DecidableEq ι] [FiniteDimensional K V] (b : Basis ι K V) :
              B.dualBasis hB (B.dualBasis hB b) = b
              noncomputable def LinearMap.BilinForm.symmCompOfNondegenerate {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B₁ B₂ : LinearMap.BilinForm K V) (b₂ : B₂.Nondegenerate) :

              Given bilinear forms B₁, B₂ where B₂ is nondegenerate, symmCompOfNondegenerate is the linear map B₂ ∘ B₁.

              Equations
              • B₁.symmCompOfNondegenerate B₂ b₂ = (B₂.toDual b₂).symm ∘ₗ B₁
              Instances For
                theorem LinearMap.BilinForm.comp_symmCompOfNondegenerate_apply {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B₁ : LinearMap.BilinForm K V) {B₂ : LinearMap.BilinForm K V} (b₂ : B₂.Nondegenerate) (v : V) :
                B₂ ((B₁.symmCompOfNondegenerate B₂ b₂) v) = B₁ v
                @[simp]
                theorem LinearMap.BilinForm.symmCompOfNondegenerate_left_apply {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B₁ : LinearMap.BilinForm K V) {B₂ : LinearMap.BilinForm K V} (b₂ : B₂.Nondegenerate) (v w : V) :
                (B₂ ((B₁.symmCompOfNondegenerate B₂ b₂) w)) v = (B₁ w) v
                noncomputable def LinearMap.BilinForm.leftAdjointOfNondegenerate {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (φ : V →ₗ[K] V) :

                Given the nondegenerate bilinear form B and the linear map φ, leftAdjointOfNondegenerate provides the left adjoint of φ with respect to B. The lemma proving this property is BilinForm.isAdjointPairLeftAdjointOfNondegenerate.

                Equations
                • B.leftAdjointOfNondegenerate b φ = (B.compRight φ).symmCompOfNondegenerate B b
                Instances For
                  theorem LinearMap.BilinForm.isAdjointPairLeftAdjointOfNondegenerate {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (φ : V →ₗ[K] V) :
                  IsAdjointPair B B (B.leftAdjointOfNondegenerate b φ) φ
                  theorem LinearMap.BilinForm.isAdjointPair_iff_eq_of_nondegenerate {V : Type u_5} {K : Type u_6} [Field K] [AddCommGroup V] [Module K V] [FiniteDimensional K V] (B : LinearMap.BilinForm K V) (b : B.Nondegenerate) (ψ φ : V →ₗ[K] V) :
                  IsAdjointPair B B ψ φ ψ = B.leftAdjointOfNondegenerate b φ

                  Given the nondegenerate bilinear form B, the linear map φ has a unique left adjoint given by BilinForm.leftAdjointOfNondegenerate.