Documentation

Mathlib.LinearAlgebra.Semisimple

Semisimple linear endomorphisms #

Given an R-module M together with an R-linear endomorphism f : M → M, the following two conditions are equivalent:

  1. Every f-invariant submodule of M has an f-invariant complement.
  2. M is a semisimple R[X]-module, where the action of the polynomial ring is induced by f.

A linear endomorphism f satisfying these equivalent conditions is known as a semisimple endomorphism. We provide basic definitions and results about such endomorphisms in this file.

Main definitions / results: #

TODO #

In finite dimensions over a field:

def Module.End.IsSemisimple {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (f : End R M) :

A linear endomorphism of an R-module M is called semisimple if the induced R[X]-module structure on M is semisimple. This is equivalent to saying that every f-invariant R-submodule of M has an f-invariant complement: see Module.End.isSemisimple_iff.

Equations
Instances For
    def Module.End.IsFinitelySemisimple {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (f : End R M) :

    A weaker version of semisimplicity that only prescribes behaviour on finitely-generated submodules.

    Equations
    Instances For
      theorem Module.End.isSemisimple_iff' {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} :
      f.IsSemisimple ∀ (p : f.invtSubmodule), ∃ (q : f.invtSubmodule), IsCompl p q

      A linear endomorphism is semisimple if every invariant submodule has in invariant complement.

      See also Module.End.isSemisimple_iff.

      theorem Module.End.isSemisimple_iff {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} :
      f.IsSemisimple pf.invtSubmodule, qf.invtSubmodule, IsCompl p q
      theorem Module.End.isSemisimple_restrict_iff {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} (p : Submodule R M) (hp : p f.invtSubmodule) :
      IsSemisimple (LinearMap.restrict f hp) qf.invtSubmodule, q prp, r f.invtSubmodule Disjoint q r q r = p
      theorem Module.End.isFinitelySemisimple_iff' {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} :
      f.IsFinitelySemisimple ∀ (p : Submodule R M) (hp : p f.invtSubmodule), Module.Finite R pIsSemisimple (LinearMap.restrict f hp)

      A linear endomorphism is finitely semisimple if it is semisimple on every finitely-generated invariant submodule.

      See also Module.End.isFinitelySemisimple_iff.

      theorem Module.End.isFinitelySemisimple_iff {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} :
      f.IsFinitelySemisimple pf.invtSubmodule, Module.Finite R pqf.invtSubmodule, q prp, r f.invtSubmodule Disjoint q r q r = p

      A characterisation of Module.End.IsFinitelySemisimple using only the lattice of submodules of M (thus avoiding submodules of submodules).

      @[simp]
      @[simp]
      theorem Module.End.isSemisimple_neg {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} :
      (-f).IsSemisimple f.IsSemisimple
      theorem LinearEquiv.isSemisimple_iff {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] (f : Module.End R M) {M₂ : Type u_3} [AddCommGroup M₂] [Module R M₂] (g : Module.End R M₂) (e : M ≃ₗ[R] M₂) (he : e ∘ₗ f = g ∘ₗ e) :
      f.IsSemisimple g.IsSemisimple
      theorem Module.End.eq_zero_of_isNilpotent_isSemisimple {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} (hn : IsNilpotent f) (hs : f.IsSemisimple) :
      f = 0
      theorem Module.End.eq_zero_of_isNilpotent_of_isFinitelySemisimple {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} (hn : IsNilpotent f) (hs : f.IsFinitelySemisimple) :
      f = 0
      @[simp]
      theorem Module.End.isSemisimple_sub_algebraMap_iff {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} {μ : R} :
      (f - (algebraMap R (End R M)) μ).IsSemisimple f.IsSemisimple
      theorem Module.End.IsSemisimple.restrict {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} {p : Submodule R M} (hp : p f.invtSubmodule) (hf : f.IsSemisimple) :
      theorem Module.End.IsSemisimple.isFinitelySemisimple {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} (hf : f.IsSemisimple) :
      f.IsFinitelySemisimple
      @[simp]
      theorem Module.End.isFinitelySemisimple_iff_isSemisimple {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} [Module.Finite R M] :
      f.IsFinitelySemisimple f.IsSemisimple
      @[simp]
      theorem Module.End.isFinitelySemisimple_sub_algebraMap_iff {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} {μ : R} :
      (f - (algebraMap R (End R M)) μ).IsFinitelySemisimple f.IsFinitelySemisimple
      theorem Module.End.IsFinitelySemisimple.restrict {R : Type u_1} {M : Type u_2} [CommRing R] [AddCommGroup M] [Module R M] {f : End R M} {p : Submodule R M} (hp : p f.invtSubmodule) (hf : f.IsFinitelySemisimple) :
      theorem Module.End.IsSemisimple_smul_iff {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f : End K M} {t : K} (ht : t 0) :
      (t f).IsSemisimple f.IsSemisimple
      theorem Module.End.IsSemisimple_smul {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f : End K M} (t : K) (h : f.IsSemisimple) :
      (t f).IsSemisimple
      theorem Module.End.isSemisimple_of_squarefree_aeval_eq_zero {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f : End K M} {p : Polynomial K} (hp : Squarefree p) (hpf : (Polynomial.aeval f) p = 0) :
      f.IsSemisimple
      theorem Module.End.IsSemisimple.minpoly_squarefree {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f : End K M} [FiniteDimensional K M] (hf : f.IsSemisimple) :

      The minimal polynomial of a semisimple endomorphism is square free

      theorem Module.End.IsSemisimple.aeval {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f : End K M} [FiniteDimensional K M] (hf : f.IsSemisimple) (p : Polynomial K) :
      ((Polynomial.aeval f) p).IsSemisimple
      theorem Module.End.IsSemisimple.of_mem_adjoin_singleton {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f : End K M} [FiniteDimensional K M] (hf : f.IsSemisimple) {a : End K M} (ha : a Algebra.adjoin K {f}) :
      a.IsSemisimple
      theorem Module.End.IsSemisimple.pow {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f : End K M} [FiniteDimensional K M] (hf : f.IsSemisimple) (n : ) :
      (f ^ n).IsSemisimple
      theorem Module.End.IsSemisimple.of_mem_adjoin_pair {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f g : End K M} [FiniteDimensional K M] [PerfectField K] (comm : Commute f g) (hf : f.IsSemisimple) (hg : g.IsSemisimple) {a : End K M} (ha : a Algebra.adjoin K {f, g}) :
      a.IsSemisimple
      theorem Module.End.IsSemisimple.add_of_commute {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f g : End K M} [FiniteDimensional K M] [PerfectField K] (comm : Commute f g) (hf : f.IsSemisimple) (hg : g.IsSemisimple) :
      (f + g).IsSemisimple
      theorem Module.End.IsSemisimple.sub_of_commute {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f g : End K M} [FiniteDimensional K M] [PerfectField K] (comm : Commute f g) (hf : f.IsSemisimple) (hg : g.IsSemisimple) :
      (f - g).IsSemisimple
      theorem Module.End.IsSemisimple.mul_of_commute {M : Type u_2} [AddCommGroup M] {K : Type u_3} [Field K] [Module K M] {f g : End K M} [FiniteDimensional K M] [PerfectField K] (comm : Commute f g) (hf : f.IsSemisimple) (hg : g.IsSemisimple) :
      (f * g).IsSemisimple