Documentation

Mathlib.AlgebraicGeometry.Morphisms.QuasiSeparated

Quasi-separated morphisms #

A morphism of schemes f : X ⟶ Y is quasi-separated if the diagonal morphism X ⟶ X ×[Y] X is quasi-compact.

A scheme is quasi-separated if the intersections of any two affine open sets is quasi-compact. (AlgebraicGeometry.quasiSeparatedSpace_iff_affine)

We show that a morphism is quasi-separated if the preimage of every affine open is quasi-separated.

We also show that this property is local at the target, and is stable under compositions and base-changes.

Main result #

A morphism is QuasiSeparated if diagonal map is quasi-compact.

Instances

    The AffineTargetMorphismProperty corresponding to QuasiSeparated, asserting that the domain is a quasi-separated scheme.

    Equations
    Instances For
      theorem AlgebraicGeometry.quasiSeparatedSpace_iff_affine (X : AlgebraicGeometry.Scheme) :
      QuasiSeparatedSpace X.toPresheafedSpace ∀ (U V : X.affineOpens), IsCompact (U V)
      theorem AlgebraicGeometry.QuasiSeparated.affine_openCover_TFAE {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} (f : X Y) :
      [AlgebraicGeometry.QuasiSeparated f, ∃ (𝒰 : Y.OpenCover) (_ : ∀ (i : 𝒰.J), AlgebraicGeometry.IsAffine (𝒰.obj i)), ∀ (i : 𝒰.J), QuasiSeparatedSpace (CategoryTheory.Limits.pullback f (𝒰.map i)).toPresheafedSpace, ∀ (𝒰 : Y.OpenCover) [inst : ∀ (i : 𝒰.J), AlgebraicGeometry.IsAffine (𝒰.obj i)] (i : 𝒰.J), QuasiSeparatedSpace (CategoryTheory.Limits.pullback f (𝒰.map i)).toPresheafedSpace, ∀ {U : AlgebraicGeometry.Scheme} (g : U Y) [inst : AlgebraicGeometry.IsAffine U] [inst : AlgebraicGeometry.IsOpenImmersion g], QuasiSeparatedSpace (CategoryTheory.Limits.pullback f g).toPresheafedSpace, ∃ (𝒰 : Y.OpenCover) (_ : ∀ (i : 𝒰.J), AlgebraicGeometry.IsAffine (𝒰.obj i)) (𝒰' : (i : 𝒰.J) → (CategoryTheory.Limits.pullback f (𝒰.map i)).OpenCover) (_ : ∀ (i : 𝒰.J) (j : (𝒰' i).J), AlgebraicGeometry.IsAffine ((𝒰' i).obj j)), ∀ (i : 𝒰.J) (j k : (𝒰' i).J), CompactSpace (CategoryTheory.Limits.pullback ((𝒰' i).map j) ((𝒰' i).map k)).toPresheafedSpace].TFAE
      theorem AlgebraicGeometry.QuasiSeparated.openCover_TFAE {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} (f : X Y) :
      [AlgebraicGeometry.QuasiSeparated f, ∃ (𝒰 : Y.OpenCover), ∀ (i : 𝒰.J), AlgebraicGeometry.QuasiSeparated CategoryTheory.Limits.pullback.snd, ∀ (𝒰 : Y.OpenCover) (i : 𝒰.J), AlgebraicGeometry.QuasiSeparated CategoryTheory.Limits.pullback.snd, ∀ (U : TopologicalSpace.Opens Y.toPresheafedSpace), AlgebraicGeometry.QuasiSeparated (f ∣_ U), ∀ {U : AlgebraicGeometry.Scheme} (g : U Y) [inst : AlgebraicGeometry.IsOpenImmersion g], AlgebraicGeometry.QuasiSeparated CategoryTheory.Limits.pullback.snd, ∃ (ι : Type u) (U : ιTopologicalSpace.Opens Y.toPresheafedSpace) (_ : iSup U = ), ∀ (i : ι), AlgebraicGeometry.QuasiSeparated (f ∣_ U i)].TFAE
      theorem AlgebraicGeometry.QuasiSeparated.affine_openCover_iff {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} (𝒰 : Y.OpenCover) [∀ (i : 𝒰.J), AlgebraicGeometry.IsAffine (𝒰.obj i)] (f : X Y) :
      AlgebraicGeometry.QuasiSeparated f ∀ (i : 𝒰.J), QuasiSeparatedSpace (CategoryTheory.Limits.pullback f (𝒰.map i)).toPresheafedSpace
      theorem AlgebraicGeometry.exists_eq_pow_mul_of_isAffineOpen (X : AlgebraicGeometry.Scheme) (U : TopologicalSpace.Opens X.toPresheafedSpace) (hU : AlgebraicGeometry.IsAffineOpen U) (f : (X.presheaf.obj (Opposite.op U))) (x : (X.presheaf.obj (Opposite.op (X.basicOpen f)))) :
      ∃ (n : ) (y : (X.presheaf.obj (Opposite.op U))), TopCat.Presheaf.restrictOpen y (X.basicOpen f) = TopCat.Presheaf.restrictOpen f (X.basicOpen f) ^ n * x
      theorem AlgebraicGeometry.exists_eq_pow_mul_of_is_compact_of_quasi_separated_space_aux_aux {X : TopCat} (F : TopCat.Presheaf CommRingCat X) {U₁ : TopologicalSpace.Opens X} {U₂ : TopologicalSpace.Opens X} {U₃ : TopologicalSpace.Opens X} {U₄ : TopologicalSpace.Opens X} {U₅ : TopologicalSpace.Opens X} {U₆ : TopologicalSpace.Opens X} {U₇ : TopologicalSpace.Opens X} {n₁ : } {n₂ : } {y₁ : (F.obj (Opposite.op U₁))} {y₂ : (F.obj (Opposite.op U₂))} {f : (F.obj (Opposite.op (U₁ U₂)))} {x : (F.obj (Opposite.op U₃))} (h₄₁ : U₄ U₁) (h₄₂ : U₄ U₂) (h₅₁ : U₅ U₁) (h₅₃ : U₅ U₃) (h₆₂ : U₆ U₂) (h₆₃ : U₆ U₃) (h₇₄ : U₇ U₄) (h₇₅ : U₇ U₅) (h₇₆ : U₇ U₆) (e₁ : TopCat.Presheaf.restrictOpen y₁ U₅ h₅₁ = TopCat.Presheaf.restrictOpen (TopCat.Presheaf.restrictOpen f U₁ ) U₅ h₅₁ ^ n₁ * TopCat.Presheaf.restrictOpen x U₅ h₅₃) (e₂ : TopCat.Presheaf.restrictOpen y₂ U₆ h₆₂ = TopCat.Presheaf.restrictOpen (TopCat.Presheaf.restrictOpen f U₂ ) U₆ h₆₂ ^ n₂ * TopCat.Presheaf.restrictOpen x U₆ h₆₃) :
      theorem AlgebraicGeometry.exists_eq_pow_mul_of_is_compact_of_quasi_separated_space_aux (X : AlgebraicGeometry.Scheme) (S : X.affineOpens) (U₁ : TopologicalSpace.Opens X.toPresheafedSpace) (U₂ : TopologicalSpace.Opens X.toPresheafedSpace) {n₁ : } {n₂ : } {y₁ : (X.presheaf.obj (Opposite.op U₁))} {y₂ : (X.presheaf.obj (Opposite.op U₂))} {f : (X.presheaf.obj (Opposite.op (U₁ U₂)))} {x : (X.presheaf.obj (Opposite.op (X.basicOpen f)))} (h₁ : S U₁) (h₂ : S U₂) (e₁ : TopCat.Presheaf.restrictOpen y₁ (X.basicOpen (TopCat.Presheaf.restrictOpen f U₁ )) = TopCat.Presheaf.restrictOpen (TopCat.Presheaf.restrictOpen f U₁ ) (X.basicOpen (TopCat.Presheaf.restrictOpen f U₁ )) ^ n₁ * TopCat.Presheaf.restrictOpen x (X.basicOpen (TopCat.Presheaf.restrictOpen f U₁ )) ) (e₂ : TopCat.Presheaf.restrictOpen y₂ (X.basicOpen (TopCat.Presheaf.restrictOpen f U₂ )) = TopCat.Presheaf.restrictOpen (TopCat.Presheaf.restrictOpen f U₂ ) (X.basicOpen (TopCat.Presheaf.restrictOpen f U₂ )) ^ n₂ * TopCat.Presheaf.restrictOpen x (X.basicOpen (TopCat.Presheaf.restrictOpen f U₂ )) ) :
      ∃ (n : ), ∀ (m : ), n mTopCat.Presheaf.restrictOpen (TopCat.Presheaf.restrictOpen f U₁ ^ (m + n₂) * y₁) (S) h₁ = TopCat.Presheaf.restrictOpen (TopCat.Presheaf.restrictOpen f U₂ ^ (m + n₁) * y₂) (S) h₂
      theorem AlgebraicGeometry.exists_eq_pow_mul_of_isCompact_of_isQuasiSeparated (X : AlgebraicGeometry.Scheme) (U : TopologicalSpace.Opens X.toPresheafedSpace) (hU : IsCompact U.carrier) (hU' : IsQuasiSeparated U.carrier) (f : (X.presheaf.obj (Opposite.op U))) (x : (X.presheaf.obj (Opposite.op (X.basicOpen f)))) :
      ∃ (n : ) (y : (X.presheaf.obj (Opposite.op U))), TopCat.Presheaf.restrictOpen y (X.basicOpen f) = TopCat.Presheaf.restrictOpen f (X.basicOpen f) ^ n * x
      theorem AlgebraicGeometry.is_localization_basicOpen_of_qcqs {X : AlgebraicGeometry.Scheme} {U : TopologicalSpace.Opens X.toPresheafedSpace} (hU : IsCompact U.carrier) (hU' : IsQuasiSeparated U.carrier) (f : (X.presheaf.obj (Opposite.op U))) :
      IsLocalization.Away f (X.presheaf.obj (Opposite.op (X.basicOpen f)))

      If U is qcqs, then Γ(X, D(f)) ≃ Γ(X, U)_f for every f : Γ(X, U). This is known as the Qcqs lemma in [R. Vakil, The rising sea][RisingSea].