Documentation

Mathlib.Geometry.RingedSpace.PresheafedSpace

Presheafed spaces #

Introduces the category of topological spaces equipped with a presheaf (taking values in an arbitrary target category C.)

We further describe how to apply functors and natural transformations to the values of the presheaves.

structure AlgebraicGeometry.PresheafedSpace (C : Type u_1) [CategoryTheory.Category.{u_2, u_1} C] :
Type (max (max u_1 u_2) (u_3 + 1))

A PresheafedSpace C is a topological space equipped with a presheaf of Cs.

Instances For
    theorem AlgebraicGeometry.PresheafedSpace.mk_coe {C : Type u_1} [CategoryTheory.Category.{u_3, u_1} C] (carrier : TopCat) (presheaf : TopCat.Presheaf C carrier) :
    { carrier := carrier, presheaf := presheaf } = carrier
    Equations
    • X.instTopologicalSpaceαCarrier = (↑X).str

    The constant presheaf on X with value Z.

    Equations
    Instances For

      A morphism between presheafed spaces X and Y consists of a continuous map f between the underlying topological spaces, and a (notice contravariant!) map from the presheaf on Y to the pushforward of the presheaf on X via f.

      Instances For
        theorem AlgebraicGeometry.PresheafedSpace.hext {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : PresheafedSpace C} (α β : X.Hom Y) (w : α.base = β.base) (h : HEq α.c β.c) :
        α = β

        The identity morphism of a PresheafedSpace.

        Equations
        Instances For
          Equations
          • X.homInhabited = { default := X.id }
          def AlgebraicGeometry.PresheafedSpace.comp {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y Z : PresheafedSpace C} (α : X.Hom Y) (β : Y.Hom Z) :
          X.Hom Z

          Composition of morphisms of PresheafedSpaces.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem AlgebraicGeometry.PresheafedSpace.comp_c {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y Z : PresheafedSpace C} (α : X.Hom Y) (β : Y.Hom Z) :

            The category of PresheafedSpaces. Morphisms are pairs, a continuous map and a presheaf map from the presheaf on the target to the pushforward of the presheaf on the source.

            Equations
            @[reducible, inline]

            Cast Hom X Y as an arrow X ⟶ Y of presheaves.

            Equations
            • f.toPshHom = f
            Instances For
              Equations
              • X.instCoeFunHomForallαTopologicalSpaceCarrier Y = { coe := fun (f : X Y) => f.base }
              @[simp]

              Sometimes rewriting with comp_c_app doesn't work because of dependent type issues. In that case, erw comp_c_app_assoc might make progress. The lemma comp_c_app_assoc is also better suited for rewrites in the opposite direction.

              theorem AlgebraicGeometry.PresheafedSpace.congr_app {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : PresheafedSpace C} {α β : X Y} (h : α = β) (U : (TopologicalSpace.Opens Y)ᵒᵖ) :
              α.c.app U = CategoryTheory.CategoryStruct.comp (β.c.app U) (X.presheaf.map (CategoryTheory.eqToHom ))

              The forgetful functor from PresheafedSpace to TopCat.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem AlgebraicGeometry.PresheafedSpace.forget_map (C : Type u_1) [CategoryTheory.Category.{u_2, u_1} C] {X✝ Y✝ : PresheafedSpace C} (f : X✝ Y✝) :
                (forget C).map f = f.base
                def AlgebraicGeometry.PresheafedSpace.isoOfComponents {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : PresheafedSpace C} (H : X Y) (α : (TopCat.Presheaf.pushforward C H.hom).obj X.presheaf Y.presheaf) :
                X Y

                An isomorphism of PresheafedSpaces is a homeomorphism of the underlying space, and a natural transformation between the sheaves.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem AlgebraicGeometry.PresheafedSpace.isoOfComponents_hom {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : PresheafedSpace C} (H : X Y) (α : (TopCat.Presheaf.pushforward C H.hom).obj X.presheaf Y.presheaf) :
                  (isoOfComponents H α).hom = { base := H.hom, c := α.inv }
                  @[simp]
                  theorem AlgebraicGeometry.PresheafedSpace.isoOfComponents_inv {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X Y : PresheafedSpace C} (H : X Y) (α : (TopCat.Presheaf.pushforward C H.hom).obj X.presheaf Y.presheaf) :
                  (isoOfComponents H α).inv = { base := H.inv, c := TopCat.Presheaf.toPushforwardOfIso H α.hom }

                  Isomorphic PresheafedSpaces have naturally isomorphic presheaves.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    The restriction of a presheafed space along an open embedding into the space.

                    Equations
                    • X.restrict h = { carrier := U, presheaf := .functor.op.comp X.presheaf }
                    Instances For
                      @[simp]
                      theorem AlgebraicGeometry.PresheafedSpace.restrict_presheaf {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {U : TopCat} (X : PresheafedSpace C) {f : U X} (h : Topology.IsOpenEmbedding f) :
                      (X.restrict h).presheaf = .functor.op.comp X.presheaf
                      @[simp]

                      The map from the restriction of a presheafed space.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[simp]
                        theorem AlgebraicGeometry.PresheafedSpace.ofRestrict_base {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {U : TopCat} (X : PresheafedSpace C) {f : U X} (h : Topology.IsOpenEmbedding f) :
                        (X.ofRestrict h).base = f
                        @[simp]
                        theorem AlgebraicGeometry.PresheafedSpace.ofRestrict_c_app {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {U : TopCat} (X : PresheafedSpace C) {f : U X} (h : Topology.IsOpenEmbedding f) (V : (TopologicalSpace.Opens X)ᵒᵖ) :
                        (X.ofRestrict h).c.app V = X.presheaf.map (.adjunction.counit.app (Opposite.unop V)).op

                        The map to the restriction of a presheafed space along the canonical inclusion from the top subspace.

                        Equations
                        Instances For

                          The isomorphism from the restriction to the top subspace.

                          Equations
                          • X.restrictTopIso = { hom := X.ofRestrict , inv := X.toRestrictTop, hom_inv_id := , inv_hom_id := }
                          Instances For
                            @[simp]
                            theorem AlgebraicGeometry.PresheafedSpace.restrictTopIso_hom {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (X : PresheafedSpace C) :
                            X.restrictTopIso.hom = X.ofRestrict
                            @[simp]
                            theorem AlgebraicGeometry.PresheafedSpace.restrictTopIso_inv {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] (X : PresheafedSpace C) :
                            X.restrictTopIso.inv = X.toRestrictTop

                            The global sections, notated Gamma.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem AlgebraicGeometry.PresheafedSpace.Γ_map {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {X✝ Y✝ : (PresheafedSpace C)ᵒᵖ} (f : X✝ Y✝) :
                              Γ.map f = f.unop.c.app (Opposite.op )

                              We can apply a functor F : C ⥤ D to the values of the presheaf in any PresheafedSpace C, giving a functor PresheafedSpace C ⥤ PresheafedSpace D

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                @[simp]
                                theorem CategoryTheory.Functor.mapPresheaf_obj_X {C : Type u_1} [Category.{u_3, u_1} C] {D : Type u_2} [Category.{u_4, u_2} D] (F : Functor C D) (X : AlgebraicGeometry.PresheafedSpace C) :
                                (F.mapPresheaf.obj X) = X
                                @[simp]
                                theorem CategoryTheory.Functor.mapPresheaf_obj_presheaf {C : Type u_1} [Category.{u_3, u_1} C] {D : Type u_2} [Category.{u_4, u_2} D] (F : Functor C D) (X : AlgebraicGeometry.PresheafedSpace C) :
                                (F.mapPresheaf.obj X).presheaf = comp X.presheaf F
                                @[simp]
                                theorem CategoryTheory.Functor.mapPresheaf_map_f {C : Type u_1} [Category.{u_3, u_1} C] {D : Type u_2} [Category.{u_4, u_2} D] (F : Functor C D) {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X Y) :
                                (F.mapPresheaf.map f).base = f.base
                                @[simp]
                                theorem CategoryTheory.Functor.mapPresheaf_map_c {C : Type u_1} [Category.{u_3, u_1} C] {D : Type u_2} [Category.{u_4, u_2} D] (F : Functor C D) {X Y : AlgebraicGeometry.PresheafedSpace C} (f : X Y) :
                                (F.mapPresheaf.map f).c = whiskerRight f.c F
                                def CategoryTheory.NatTrans.onPresheaf {C : Type u_1} [Category.{u_3, u_1} C] {D : Type u_2} [Category.{u_4, u_2} D] {F G : Functor C D} (α : F G) :
                                G.mapPresheaf F.mapPresheaf

                                A natural transformation induces a natural transformation between the map_presheaf functors.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For