Documentation

Mathlib.AlgebraicGeometry.Morphisms.Constructors

Constructors for properties of morphisms between schemes #

This file provides some constructors to obtain morphism properties of schemes from other morphism properties:

Also provides API for showing the standard locality and stability properties for these types of properties.

The AffineTargetMorphismProperty associated to (targetAffineLocally P).diagonal. See diagonal_targetAffineLocally_eq_targetAffineLocally.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem AlgebraicGeometry.HasAffineProperty.diagonal_of_openCover (P : CategoryTheory.MorphismProperty Scheme) {Q : AffineTargetMorphismProperty} [HasAffineProperty P Q] {X Y : Scheme} (f : X Y) (𝒰 : Y.OpenCover) [∀ (i : 𝒰.J), IsAffine (𝒰.obj i)] (𝒰' : (i : 𝒰.J) → (CategoryTheory.Limits.pullback f (𝒰.map i)).OpenCover) [∀ (i : 𝒰.J) (j : (𝒰' i).J), IsAffine ((𝒰' i).obj j)] (h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), Q (CategoryTheory.Limits.pullback.mapDesc ((𝒰' i).map j) ((𝒰' i).map k) (Scheme.Cover.pullbackHom 𝒰 f i))) :
    theorem AlgebraicGeometry.universally_isLocalAtTarget (P : CategoryTheory.MorphismProperty Scheme) (hP₂ : ∀ {X Y : Scheme} (f : X Y) {ι : Type u} (U : ιY.Opens), iSup U = (∀ (i : ι), P (f ∣_ U i))P f) :
    def AlgebraicGeometry.topologically (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) :

    topologically P holds for a morphism if the underlying topological map satisfies P.

    Equations
    Instances For
      theorem AlgebraicGeometry.topologically_isStableUnderComposition (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) (hP : ∀ {α β γ : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] [inst_2 : TopologicalSpace γ] (f : αβ) (g : βγ), P fP gP (g f)) :

      If a property of maps of topological spaces is stable under composition, the induced morphism property of schemes is stable under composition.

      theorem AlgebraicGeometry.topologically_iso_le (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) (hP : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : α ≃ₜ β), P f) :

      If a property of maps of topological spaces is satisfied by all homeomorphisms, every isomorphism of schemes satisfies the induced property.

      theorem AlgebraicGeometry.topologically_respectsIso (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) (hP₁ : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : α ≃ₜ β), P f) (hP₂ : ∀ {α β γ : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] [inst_2 : TopologicalSpace γ] (f : αβ) (g : βγ), P fP gP (g f)) :

      If a property of maps of topological spaces is satisfied by homeomorphisms and is stable under composition, the induced property on schemes respects isomorphisms.

      theorem AlgebraicGeometry.topologically_isLocalAtTarget (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) [(topologically fun {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] => P).RespectsIso] (hP₂ : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : αβ) (s : Set β), Continuous fIsOpen sP fP (s.restrictPreimage f)) (hP₃ : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : αβ) {ι : Type u} (U : ιTopologicalSpace.Opens β), iSup U = Continuous f(∀ (i : ι), P ((U i).carrier.restrictPreimage f))P f) :

      To check that a topologically defined morphism property is local at the target, we may check the corresponding properties on topological spaces.

      theorem AlgebraicGeometry.topologically_isLocalAtTarget' (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) [(topologically fun {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] => P).RespectsIso] (hP : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : αβ) {ι : Type u} (U : ιTopologicalSpace.Opens β), iSup U = Continuous f → (P f ∀ (i : ι), P ((U i).carrier.restrictPreimage f))) :

      A variant of topologically_isLocalAtTarget that takes one iff statement instead of two implications.

      def AlgebraicGeometry.stalkwise (P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop) :

      stalkwise P holds for a morphism if all stalks satisfy P.

      Equations
      Instances For
        theorem AlgebraicGeometry.stalkwise_respectsIso {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} (hP : RingHom.RespectsIso fun {R S : Type u} [CommRing R] [CommRing S] => P) :
        (stalkwise fun {R S : Type u} [CommRing R] [CommRing S] => P).RespectsIso

        If P respects isos, then stalkwise P respects isos.

        theorem AlgebraicGeometry.stalkwiseIsLocalAtTarget_of_respectsIso {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} (hP : RingHom.RespectsIso fun {R S : Type u} [CommRing R] [CommRing S] => P) :
        IsLocalAtTarget (stalkwise fun {R S : Type u} [CommRing R] [CommRing S] => P)

        If P respects isos, then stalkwise P is local at the target.

        theorem AlgebraicGeometry.stalkwise_isLocalAtSource_of_respectsIso {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} (hP : RingHom.RespectsIso fun {R S : Type u} [CommRing R] [CommRing S] => P) :
        IsLocalAtSource (stalkwise fun {R S : Type u} [CommRing R] [CommRing S] => P)

        If P respects isos, then stalkwise P is local at the source.

        theorem AlgebraicGeometry.stalkwise_Spec_map_iff {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S) → Prop} (hP : RingHom.RespectsIso fun {R S : Type u} [CommRing R] [CommRing S] => P) {R S : CommRingCat} (φ : R S) :
        stalkwise (fun {R S : Type u} [CommRing R] [CommRing S] => P) (Spec.map φ) ∀ (p : Ideal S) (x : p.IsPrime), P (Localization.localRingHom (Ideal.comap (CommRingCat.Hom.hom φ) p) p (CommRingCat.Hom.hom φ) )

        If P is local at the target, to show that P is stable under base change, it suffices to check this for base change along a morphism of affine schemes.